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Summing up before going
further




What we have seen so far

Local robustness Formal Explanations Testing and debugging

‘Potato”

[+w, [+wg

S "‘Bulldog”

Helps you finding faulty inputs and
correct the net

Checks that your network is correct and
robust

Helps you understand how your model
takes decisions
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A due reminder

Local robustness [1]

Let a classifier f: X' — Y. Given x € X and ¢ € R << 1 the problem of local
robustness is to prove that vz}, |z — z!}| <& = f(z) = f(z!)

Sprinkled over the whole course and yet, we discussed very little on how it is
actually encoded
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Content of this last session

This final course will delve into practicalities of formal verification of neural
networks

« tools

- languages

« social community and venues

« some future possible research tracks, informed by the past
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Tools




Gemm

B (1x128)
c L

B (128x128)
C (128)

B {128x3)
C (128)

[Unnx::Gemm_(} }
1x3 ’L

A neural network can be represented as a directed acyclic graph (DAG)

> ONNX



Representing neural networks

Open Neural Network eXchange (ONNX) format: 196 operators

ONNX Operators

Lists out all the ONNX operators. For each operator, lists out the usage guide, parameters, examples,

and line-by-line version history. This section also includes tables detailing each operator with its
versions, as done in Operators.md.

All examples end by calling function expect. which checks a runtime produces the expected output for
this example. One implementation based on onnxruntime can be found at Sample operator test code.

ai.onnx ai.onnx.ml ai.onnx.preview.training
operator versions differences
Abs 13, 6, 1 13/6, 13/1, 6/1
Acos 22,7 22/7
Acosh 22,9 22/9
14/13, 14/7,13/7, 14/6, 13/6,
Add 14,13,7,6, 1 P T S TR TR
7/6, 14/1, 131,711, 6/1
AffineGrid 20
And 7,1 (al
, / ,
ArgMax 13,12, 11,1 13/[12,1311,12/11,13/1,
121,111
13/12, 13/11, 12/11, 13/1
ArgMin 13,12, 11, 1 e et ’

Conv

Conv - 22
Version

« name: Conv (GitHub)

+ domain: main

+ since_version: 22

« function: False

« support_level: supportType.COMMON

« shape inference: True
This version of the operator has been available since version 22.

Summary

The convolution operator consumes an input tensor and a filter, and computes the output.
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Marabou (Complete SMT Solver)

Marabou (successor of ReLUPlex [1] )
is still actively developped [2], [3]

Actually the backend of most of
Session 4 formal verification
example

GitHub repo
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https://github.com/NeuralNetworkVerification/Marabou

Marabou (Complete SMT Solver)

Core features

+ A sound and complete reasoning engine, based on SMT calculus (see
Session 2.)

« Support advanced checking techniques:
» Proof productions [4] and certificates [5]
» Parallel verification with Divide and Conquer

Languages and tools
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PyRAT (Abstract Interpretation Solver)

Abstract-interpretation based
analyzer developped by our team

O\ [6], used in several real-world
é PyRAT apptljicqticl)n [7]/ ;
"N_» DEEPGREEN

v

Fancy demo

Freely available for academic Confionce @
purpose

o[
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https://pyrat-analyzer.com/demo

PyRAT (Abstract Interpretation Solver)

Core features

« Vastest ONNX support among verifiers

Support for state-of-the-art abstract interpretation domains
» all the zonotopes variants defined in session 2!

Soundness mode with regards to real-value arithmetic

Fast counterexample search with adversarial attacks

Branch and bound approaches for complete mode

@ Languages and tools
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o — 8 — CROWN (Abstract Interpretation Solver)

o — B — CROWN [8] consistently wins
VNN-Comp since 2021

CROWN

Winner of International Verification
of Neural Networks Competitions
(VNN-COMP 2021 - 2024)
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Other tools

NNV [9]
nnenum [10]
Saver [11]
NeuralSAT [12]
. MIPVerify [13]

For more details, see [14]
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Some observations

« Survivors of an initial cambrian explosion of tools (started my PhD in 2017,
there was no one)

- Tools were initially specialized into a single technique, now everybody
does (some flavour of) abstract interpretation and everybody has (some
flavour of) completeness
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Evaluating those tools

The initial benchmark; ACAS-Xu

ff .-"f
,’ -7 0 Intruder
I '__,-i
[} f.f" \
1 |
\ !
\ /
hY "
» Ownship .’
ST .
g ~--
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Evaluating those tools

But then rose several questions:

- beyond linear and convolutional layers (skip connections?)
- deeper neural networks
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The International Verification of Neural Network
Competition (VNN-Comp)

The 5th International Verification of Neural Networks
Competition (VNN-COMP 2024): Summary and Results

Christopher Brix', Stanley Bak?, Taylor T. Johnson?®, and Haoze Wu*

! RWTH Aachen University, Aachen, Germany
brix@cs.rwth-aachen.de
2 Stony Brook University, Stony Brook, New York, USA
stanley.bak@stonybrook.edu
® Vanderbilt University, Nashville, Tennessee, USA
taylor. johnson@vanderbilt.edu
4 Ambherst College, Amherst, Massachussett, USA
hwu@amherst . edu
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The International Verification of Neural Network
Competition (VNN-Comp)

Visit VNN-Comp website and skim through last year report and maybe the
actual results on the github repo?

Organized by Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu
(shout outs!!) for 2021 onward
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https://sites.google.com/view/vnn2025
https://arxiv.org/pdf/2412.19985
https://github.com/VNN-COMP/vnncomp2024_results

The International Verification of Neural Network
Competition (VNN-Comp)

- 16 different benchmarks, comprising properties and neural network to
verify

« each year: a phase of collegial discussion on the rules of the competition

« improvements and refinements on the scoring, various tracks, new
contenders..
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On tools disagreements

Property Marabou maraboupy PyRAT nnenum

T. |[A, T, T. (Al Tn [A.] T. |A.
$1 3.00 | (?) 5.00 243.00 [((D)|| 8.00 |(v)]11.00 |(v) (V)
P2 37.00 | (V) 26.00 243.00 |(D)| 19.00 | (v) | 38.00 | (V) (V)
#3  ||243.00/(D) 243.00 243.00 |((D)]|246.00{((D)|246.00|(D) (V)
ba 44.00 | (V) 36.00 4.00 | (x) | 25.00 | (v)|246.00{(D) (V)
b5 102.00/ () 93.00 5.00 | (X) ||246.00/(()|246.00| (D) (V)
b6 ||558.00] (V) M |566.00| (v) [1925.00|(D)|[156.00| (v) |426.00{ (D) (V)
d7  ||485.00[(D) 7)||484.00 484.00 |(D)|[246.00 (D) |246.00| (D) (X)
ds  ||485.00| (X) (7)|| 8.00 248.00 |((D){|246.00{(D)|246.00 (D) (X)
do  ||182.00( (V) (?)||222.00 5.00 |(X) | 61.00 | (v)[246.00{((D) (V)
b10 83.00 | (V) (7)][151.00 245.00 | (X) || 13.00 | (v)|246.00|((D) (V)




Limitations

. Soundness of provers with floating point arithmetic does not yet exist [15]

+ Still existing bugs [16]

« Some provers are difficult to install because the Python packaging
ecosystem being what it is
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So should | abandon all hope?

No!

SAT and SMT solvers that are now used have decades of work put on their
soundness and their quality
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VNN-Lib

VNN-Lib [17] is the de-facto standard for the International Competition of
Neural Network Verification (VNN-Comp [18], [19], [20] )

It is a subset of SMTLIB [21], classical specification language for SMT calculus

(more specifically, the theory of Quantifier-Free Linear Real Arithmetic
QF LRA)
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VNN-Lib

VNN-Lib [17] is the de-facto standard for the International Competition of
Neural Network Verification (VNN-Comp [18], [19], [20] )

It is a subset of SMTLIB [21], classical specification language for SMT calculus

(more specifically, the theory of Quantifier-Free Linear Real Arithmetic
QF LRA)

- Quantifier-Free: no universal quantification V: everything must be
existentially quantified

« Linear: only linear operations allowed between variables

- Real Arithmetic: computations are expected to be on Real (in practice,
Rational) numbers

@ Languages and tools
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ACAS-Xu specification in VNN-Lib

Property ¢1.

Description: If the intruder is distant and is significantly slower than the
ownship, the score of a COC advisory will always be below a certain fixed
threshold.

Tested on: all 45 networks.

— Input constraints: p > 55947.691, Vown = 1145, viye < 60.

Desired output property: the score for COC is at most 1500.

A Uown

/ - IIlt I‘U.deI' Property ¢,.

Description: If the intruder is distant and is significantly slower than the

i -

| - ! ownship, the score of a COC advisory will never be maximal.

\ I — Tested on: N, for all > 2 and for all y.

\ ! — Input constraints: p > 55947.691, vVown > 1145, viye < 60.

\ y — Desired output property: the score for COC is not the maximal score.
. s
» Ownship .
-~
9 S - e = Property ¢s.

Description: If the intruder is directly ahead and is moving towards the
ownship, the score for COC will not be minimal.

Tested on: all networks except Ny 7, Ny g, and Ny g.

Input constraints: 1500 < p < 1800, —0.06 < # < 0.06, ¢» > 3.10, Vown = 980,
UVint 2 960.

Desired output property: the score for COC is not the minimal score.
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ACAS-Xu specification in VNN-Lib

1 (declare-const X 0 Real) 1 ; Unscaled Input 2: (-3.141592, -3.1315920000000004)
2 (declare-const X 1 Real) 2 (assert (<= X 2 -0.498408347))
3 (declare-const X 2 Real) 3 (assert (>= X 2 -0.499999896))
4 (declare-const X 3 Real) 4

5 (declare-const X 4 Real) 5 ; Unscaled Input 3: (900, 1200)
6 6 (assert (<= X 3 0.5))

7 (declare-const Y O Real) 7 (assert (>= X 3 0.227272727))
8 (declare-const Y 1 Real) 8

9 (declare-const Y 2 Real) 9 ; Unscaled Input 4: (600, 1200)
10 (declare-const Y 3 Real) 10 (assert (<= X 4 0.5))

11 (declare-const Y 4 Real) 1 (assert (>= X 4 0.0))
12 12
13 ; Unscaled Input 0: (36000, 60760) 13 ; unsafe if coc is not minimal
14 (assert (<= X 0 0.679857769)) 14 (assert (or
15 (assert (>= X 0 0.268978427)) 15 (and (<= Y 1Y 0))
16 16 (and (<= Y 2 Y 0))
17 ; Unscaled Input 1: (0.7, 3.141592) 17 (and (<= Y 3 Y 0))
18 (assert (<= X 1 0.499999896)) 18 (and (<= Y 4 Y 0))
19 (assert (>= X 1 0.11140846)) 19 ))

Something is missing, right?
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ACAS-Xu specification in VNN-Lib

© 00 JO O b WN o

©® I >0 8w =0

(declare-const X 0 Real)
(declare-const X 1 Real)
(declare-const X 2 Real)
(declare-const X 3 Real)
(declare-const X 4 Real)

(declare-const Y 0 Real)
(declare-const Y _1 Real)
(declare-const Y _2 Real)
(declare-const Y 3 Real)
(declare-const Y 4 Real)

; Unscaled Input 0: (36000, 60760)
(assert (<= X 0 0.679857769))
(assert (>= X 0 0.268978427))

; Unscaled Input 1: (0.7, 3.141592)
(assert (<= X 1 0.499999896))
(assert (>= X 1 0.11140846))

1
2
3
4
5
6
7
8
9

10

1
12
13
14
15
16
17
18
19

; Unscaled I
(assert (<=

(assert (>=

; Unscaled I
(assert (<=

(assert (>=

; Unscaled I
(assert (<=

(assert (>=

; unsafe if

(assert (or
(and (<=
(and (<=
(and (<=
(and (<=

))

nput 2: (-3.141592,
X 2 -0.498408347))
X 2 -0.499999896) )

nput 3: (900, 1200)
X 3 0.5))
X 3 0.227272727))

nput 4: (600, 1200)
X 4 0.5))
X 4 0.0))

coc is not minimal

Y1Y0))
Y2Y0))
Y3Y0))
Y 4Y0))

-3.1315920000000004)

Something is missing, right? Which network are we verifying??

Languages and tools
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Limitations of VNNLib

« Does not specify anything regarding the neural network

« Specification size is linear in the size of the input: good luck proofreading
this :)

- Does not represent actual computations (real arithmetic)
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Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses

Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0
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Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses
Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0

This property is nhot amenable for provers winners of the VNN-Competition
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Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses
Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0

This property is nhot amenable for provers winners of the VNN-Competition

mexlvE'H(anwlag) =

Composition of NN A

-~ —

nn,(nn, , (z;), x;+¢€ )4+nn;(z,) >0 p Comparison of outputs
—— - S~———
Multiple NNs Operation on inputs )
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Limitations of VNNLib

Confidence-based robustness
[22]

Va,x', cond(z,x’,€) A conf(f(x)) > Kk =

class(f(x)) = class(f(z"))

For all couple of inputs, as long as the network
is confident enough in its prediction,
prediction should not change

And a whole family of hyperproperties
(multiple execution traces)

Languages and tools

(@)

class 1

categorical feature x,=v (D)

(c)

class 1
L J
o. ®
class 3
class 2

X4

categorical feature x;=v’

class 1

class 2

e class 4
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Frustrations to be adressed

 Inaccurate specification language
« No clear way to derive higher-order formulas to VNN-Lib
« Collection of tools that are difficult to install and compare
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Frustrations to be adressed with CAISAR

A specification language and a set
of tools to ease formal verification
23]

Free and Open-Source Software with
CAISAR a dedicated manual https://caisar-
platform.com
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https://caisar-platform.com
https://caisar-platform.com

A richer specification language

{decl)

(type)

{binder)

(spec)

(bop)

CAISAR specification language. Quantifier are partially supported.

type (id) = (type)
predicate (id)
(binder)” = (expr)
function (id)
(binder)” (spec)™ = {expr)
(tId)
(type) — (type)
((type),... {type))
vector (type)
int|bool|float|string
model

(id) | ((id) : (type))
requires {(expr)}
ensures {(expr)}
<lzl<]>

+|=|x[/

Alv]—=

(expr)

(id)

(built-in)

(expr)(expr)

((expr),... (expr})

let (id) = (expr) in
if (expr) then (expr)
else (expr)
(expr)(bop){expr)
forall{binder).{expr)
exists(binder).{expr)
not{expr)

i € Integer

{true, false} € Boolean

f € Float | s € String

Languages and tools

{built-in)

read_model (expr)
length (expr)
has_length (expr) (expr)
(expr)[{expr)]

(expr)@@({ expr)
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A richer specification language

Time to read a local robustness specification on MNIST!
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https://caisar-platform.com/documentation/mnist.html

A richer specification language

theory MNIST

use ieee float.Float64
use caisar.types.Float64WithBounds as Feature
use caisar.types.IntWithBounds as Label

use caisar.model.Model

use caisar.dataset.CSV
use caisar.robust.ClassRobustCSV

constant model filename: string
constant dataset filename: string
[...]

[...]
constant label bounds: Label.bounds =

Label.{ lower = 0; upper =9 }

constant feature bounds: Feature.bounds =

Feature.{ lower = (0.0:t); upper = (1.0:t) }

goal robustness:
let nn = read model model filename in

let dataset = read dataset dataset filename in

robust feature bounds label bounds nn dataset eps

end

let eps = (0.125:t) in (* Need to represent floats explicitly *)

Languages and tools
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A richer specification language

Integrates an automated graph editing technique to integrate
specifications inside of the control-flow, a la neurosymbolic

[Gather(0) [ nm

Input (Gather(1) | nm

‘Gather(2) [ Add’

Concat]—> L

Add

Gather(0) (resp. Gather(1)) extracts xy (resp. x1) and Gather(2) extracts ¢ from the Input

node. First Add computes x; + €. Nodes | """

Concat prepares nn; inputs.

nmns

Languages and tools

are the inlined nn; and nny control flows.
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Vehicle

type Image = Tensor Rat [28, 28]
type Label = Index 10

validImage : Image -> Bool

validImage x = forall i j . 0 <= x ! 1 ! j
<=1

@network

classifier : Image -> Vector Rat 10
advises : Image -> Label -> Bool

advises x i = forall j . j !'=1i =>

classifier x ! i > classifier x ! j

@parameter

epsilon : Rat

boundedByEpsilon : Image -> Bool
boundedByEpsilon x = forall i j
<=x ! i ! j <= epsilon

-epsilon

robustAround : Image -> Label -> Bool
robustAround image label = forall
pertubation .

let perturbedImage =
in

boundedByEpsilon pertubation and
validImage perturbedImage =>

advises perturbedImage label

image - pertubation

@parameter(infer=True)
n : Nat

@dataset

trainingImages : Vector Image n
@dataset

traininglLabels : Vector Label n
@property

robust : Vector Bool n

robust = foreach i . robustAround
(trainingImages ! i) (traininglLabels ! i)

A higher-level specification language [24], [25]. Displayed here is the full Vehicle specification for MNIST robustness

Languages and tools

35/ 52




Support of numerous provers

. 9 provers supported (including all VNN-Comp winners)
- reproducible build and experiments thanks to the Nix package manager

A
)\/'

. a repository of examples and (soon) benchmarks from the VNN-Comp
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On the specification problem




Ll adl AN
—>» {continue, brake, go left,
go right,...}

To verify that system, one first needs to define its inputs

Vx.x € {image with pedestrian} = f(x) = brake



— {contlnue brake go left,
go right,...}

To verify that system, one first needs to define its inputs
Vx.x € {image with pedestrian} = f(x) = brake

What is an image containing a pedestrian? How to specify it?



What makes machine learning hard to verify

Classical :
programs :

Specification
languages

Writer agent

Verification tooling

v
Uown v\N
P .-="",  TIntruder

; B

/ I

' 1

A v

A3 G

'\ Ownship .

[

Astree PonSpége
Software = = W 71 leowowas
Compcert 2 / @

[f [/ a2 m Teonich
z3

"~ aTeuer?’ \/

Explicit specification,

derived from
requirements

A team of humans
directly writes the
program

Mature tools

Neural
networks :

High dimensional

specification

>

ming ﬁ(@)

&
X

: A loss minimization
input, data as partial “scheme parametrizes

the program

Languages and tools

Still experimental
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What makes machine learning hard to verify

Problem space Embedding Embedding space
gap
- M . e . * ------- *
Specification | Specification q Training Training platform
language of @, e, u with = Tensorflow etc.
M~ 4 T
1 |
l \ 1 1
Ni LY * )
ITPs Integration | _________ _ | Verification NN Verifiers
Agda etc. of @ with ¥ of = Marabou etc.

Fig.6: Qutline of Vehicle compiler backends, bridging the Embedding Gap [33.32).

Dashed lines indicate information flow and solid lines automatic compilation.

The embedding gap we describe [26]
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(e ArC ﬁg&sggﬂgﬂ%@g‘qﬂ?%&%mi DNTUM;E‘S; GG, ETC) Neural Network specification languages

SITUATION:

THERE ARE
4 COMPETING
STANDARDS.

17! Riplculovs!

WE NEED To DEVELORP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

5ov]

SITUANON:

THERE ARE
15 COMPETING
STANDARDS.

Adapted from Randall Munroe



Closing remarks on the
course




Discussion

Specification languages

« Exploring neuro-symbolic specification using simulators/generators [27], [28]
« Closing the embedding gap as much as possible

- Refining higher-order specification into concrete verification [ constraints

Tools

« Ensuring actual soundness of the tool is paramount
« Debug! In a cool way!

« Automate tool configuration ?

@ Languages and tools
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Discussion

Community

 Help organize the VNN-Comp!

» Propose use cases (Grc:ph Neural Networks?)

« Aim towards other applications!

- Existing venues are growing (AlSafety, SafeComp, workshops in Al/ML AND Verification
Conferences)
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Feedback form

You did well and learnt a lot of things!

Feedback form: https:/ / framaforms.org/ feedback-on-essai-course-formal-verification-of-
symbolic-and-connectionist-ai-a-way-toward-higher
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https://framaforms.org/feedback-on-essai-course-formal-verification-of-symbolic-and-connectionist-ai-a-way-toward-higher
https://framaforms.org/feedback-on-essai-course-formal-verification-of-symbolic-and-connectionist-ai-a-way-toward-higher
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