list
]

Languages and tools for formal verification

ESSAI 2025

Julien Girard-Satabin
Zakaria Chihani
Dorin Doncenco

CEA LIST
2025-07-04

This work was supported by the French Agence Nationale de la
Recherche (ANR) through SAIF (ANR-23-PEIA-0006) and
DeepGreen (ANR-23-DEGR-0001) as part of the France 2030
programme.

Summing up before going
further

What we have seen so far

Local robustness Formal Explanations Testing and debugging

‘Potato”

[+w, [+wg

S "‘Bulldog”

Helps you finding faulty inputs and
correct the net

Checks that your network is correct and
robust

Helps you understand how your model
takes decisions

E Languages and tools 2/52

A due reminder

Local robustness [1]

Let a classifier f: X' — Y. Given x € X and ¢ € R << 1 the problem of local
robustness is to prove that vz}, |z — z!}| <& = f(z) = f(z!)

Sprinkled over the whole course and yet, we discussed very little on how it is
actually encoded

@ Languages and tools 3/52

Content of this last session

This final course will delve into practicalities of formal verification of neural
networks

« tools

- languages

« social community and venues

« some future possible research tracks, informed by the past

Languages and tools 4 /52

Tools

Gemm

B (1x128)
c L

B (128x128)
C (128)

B {128x3)
C (128)

[Unnx::Gemm_(} }
1x3 ’L

A neural network can be represented as a directed acyclic graph (DAG)

> ONNX

Representing neural networks

Open Neural Network eXchange (ONNX) format: 196 operators

ONNX Operators

Lists out all the ONNX operators. For each operator, lists out the usage guide, parameters, examples,

and line-by-line version history. This section also includes tables detailing each operator with its
versions, as done in Operators.md.

All examples end by calling function expect. which checks a runtime produces the expected output for
this example. One implementation based on onnxruntime can be found at Sample operator test code.

ai.onnx ai.onnx.ml ai.onnx.preview.training
operator versions differences
Abs 13, 6, 1 13/6, 13/1, 6/1
Acos 22,7 22/7
Acosh 22,9 22/9
14/13, 14/7,13/7, 14/6, 13/6,
Add 14,13,7,6, 1 P T S TR TR
7/6, 14/1, 131,711, 6/1
AffineGrid 20
And 7,1 (al
, / ,
ArgMax 13,12, 11,1 13/[12,1311,12/11,13/1,
121,111
13/12, 13/11, 12/11, 13/1
ArgMin 13,12, 11, 1 e et ’

Conv

Conv - 22
Version

« name: Conv (GitHub)

+ domain: main

+ since_version: 22

« function: False

« support_level: supportType.COMMON

« shape inference: True
This version of the operator has been available since version 22.

Summary

The convolution operator consumes an input tensor and a filter, and computes the output.

Languages and tools

6/52

Marabou (Complete SMT Solver)

Marabou (successor of ReLUPlex [1])
is still actively developped [2], [3]

Actually the backend of most of
Session 4 formal verification
example

GitHub repo

Languages and tools 7/52

https://github.com/NeuralNetworkVerification/Marabou

Marabou (Complete SMT Solver)

Core features

+ A sound and complete reasoning engine, based on SMT calculus (see
Session 2.)

« Support advanced checking techniques:
» Proof productions [4] and certificates [5]
» Parallel verification with Divide and Conquer

Languages and tools

8/ 52

PyRAT (Abstract Interpretation Solver)

Abstract-interpretation based
analyzer developped by our team

O\ [6], used in several real-world
é PyRAT apptljicqticl)n [7]/ ;
"N_» DEEPGREEN

v

Fancy demo

Freely available for academic Confionce @
purpose

o[

@ Languages and tools

9/52

https://pyrat-analyzer.com/demo

PyRAT (Abstract Interpretation Solver)

Core features

« Vastest ONNX support among verifiers

Support for state-of-the-art abstract interpretation domains
» all the zonotopes variants defined in session 2!

Soundness mode with regards to real-value arithmetic

Fast counterexample search with adversarial attacks

Branch and bound approaches for complete mode

@ Languages and tools

10/52

o — 8 — CROWN (Abstract Interpretation Solver)

o — B — CROWN [8] consistently wins
VNN-Comp since 2021

CROWN

Winner of International Verification
of Neural Networks Competitions
(VNN-COMP 2021 - 2024)

E Languages and tools n/52

Other tools

NNV [9]
nnenum [10]
Saver [11]
NeuralSAT [12]
. MIPVerify [13]

For more details, see [14]

@ Languages and tools 12/52

Some observations

« Survivors of an initial cambrian explosion of tools (started my PhD in 2017,
there was no one)

- Tools were initially specialized into a single technique, now everybody
does (some flavour of) abstract interpretation and everybody has (some
flavour of) completeness

Languages and tools 13 /52

Evaluating those tools

The initial benchmark; ACAS-Xu

ff .-"f
,’ -7 0 Intruder
I '__,-i
[} f.f" \
1 |
\ !
\ /
hY "
» Ownship .’
ST .
g ~--

Languages and tools 14 /52

Evaluating those tools

But then rose several questions:

- beyond linear and convolutional layers (skip connections?)
- deeper neural networks

Languages and tools 15 /52

The International Verification of Neural Network
Competition (VNN-Comp)

The 5th International Verification of Neural Networks
Competition (VNN-COMP 2024): Summary and Results

Christopher Brix', Stanley Bak?, Taylor T. Johnson?®, and Haoze Wu*

! RWTH Aachen University, Aachen, Germany
brix@cs.rwth-aachen.de
2 Stony Brook University, Stony Brook, New York, USA
stanley.bak@stonybrook.edu
® Vanderbilt University, Nashville, Tennessee, USA
taylor. johnson@vanderbilt.edu
4 Ambherst College, Amherst, Massachussett, USA
hwu@amherst . edu

Languages and tools

16 [52

The International Verification of Neural Network
Competition (VNN-Comp)

Visit VNN-Comp website and skim through last year report and maybe the
actual results on the github repo?

Organized by Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu
(shout outs!!) for 2021 onward

Languages and tools 17/ 52

https://sites.google.com/view/vnn2025
https://arxiv.org/pdf/2412.19985
https://github.com/VNN-COMP/vnncomp2024_results

The International Verification of Neural Network
Competition (VNN-Comp)

- 16 different benchmarks, comprising properties and neural network to
verify

« each year: a phase of collegial discussion on the rules of the competition

« improvements and refinements on the scoring, various tracks, new
contenders..

Languages and tools 18/ 52

On tools disagreements

Property Marabou maraboupy PyRAT nnenum

T. |[A, T, T. (Al Tn [A.] T. |A.
$1 3.00 | (?) 5.00 243.00 [((D)|| 8.00 |(v)]11.00 |(v) (V)
P2 37.00 | (V) 26.00 243.00 |(D)| 19.00 | (v) | 38.00 | (V) (V)
#3 ||243.00/(D) 243.00 243.00 |((D)]|246.00{((D)|246.00|(D) (V)
ba 44.00 | (V) 36.00 4.00 | (x) | 25.00 | (v)|246.00{(D) (V)
b5 102.00/ () 93.00 5.00 | (X) ||246.00/(()|246.00| (D) (V)
b6 ||558.00] (V) M |566.00| (v) [1925.00|(D)|[156.00| (v) |426.00{ (D) (V)
d7 ||485.00[(D) 7)||484.00 484.00 |(D)|[246.00 (D) |246.00| (D) (X)
ds ||485.00| (X) (7)|| 8.00 248.00 |((D){|246.00{(D)|246.00 (D) (X)
do ||182.00((V) (?)||222.00 5.00 |(X) | 61.00 | (v)[246.00{((D) (V)
b10 83.00 | (V) (7)][151.00 245.00 | (X) || 13.00 | (v)|246.00|((D) (V)

Limitations

. Soundness of provers with floating point arithmetic does not yet exist [15]

+ Still existing bugs [16]

« Some provers are difficult to install because the Python packaging
ecosystem being what it is

Languages and tools 20/ 52

So should | abandon all hope?

No!

SAT and SMT solvers that are now used have decades of work put on their
soundness and their quality

Languages and tools 21/ 52

Languages

VNN-Lib

VNN-Lib [17] is the de-facto standard for the International Competition of
Neural Network Verification (VNN-Comp [18], [19], [20])

It is a subset of SMTLIB [21], classical specification language for SMT calculus

(more specifically, the theory of Quantifier-Free Linear Real Arithmetic
QF LRA)

Languages and tools 23 /52

VNN-Lib

VNN-Lib [17] is the de-facto standard for the International Competition of
Neural Network Verification (VNN-Comp [18], [19], [20])

It is a subset of SMTLIB [21], classical specification language for SMT calculus

(more specifically, the theory of Quantifier-Free Linear Real Arithmetic
QF LRA)

- Quantifier-Free: no universal quantification V: everything must be
existentially quantified

« Linear: only linear operations allowed between variables

- Real Arithmetic: computations are expected to be on Real (in practice,
Rational) numbers

@ Languages and tools

23/ 52

ACAS-Xu specification in VNN-Lib

Property ¢1.

Description: If the intruder is distant and is significantly slower than the
ownship, the score of a COC advisory will always be below a certain fixed
threshold.

Tested on: all 45 networks.

— Input constraints: p > 55947.691, Vown = 1145, viye < 60.

Desired output property: the score for COC is at most 1500.

A Uown

/ - IIlt I‘U.deI' Property ¢,.

Description: If the intruder is distant and is significantly slower than the

i -

| - ! ownship, the score of a COC advisory will never be maximal.

\ I — Tested on: N, for all > 2 and for all y.

\ ! — Input constraints: p > 55947.691, vVown > 1145, viye < 60.

\ y — Desired output property: the score for COC is not the maximal score.
. s
» Ownship .
-~
9 S - e = Property ¢s.

Description: If the intruder is directly ahead and is moving towards the
ownship, the score for COC will not be minimal.

Tested on: all networks except Ny 7, Ny g, and Ny g.

Input constraints: 1500 < p < 1800, —0.06 < # < 0.06, ¢» > 3.10, Vown = 980,
UVint 2 960.

Desired output property: the score for COC is not the minimal score.

Languages and tools 24 [52

ACAS-Xu specification in VNN-Lib

1 (declare-const X 0 Real) 1 ; Unscaled Input 2: (-3.141592, -3.1315920000000004)
2 (declare-const X 1 Real) 2 (assert (<= X 2 -0.498408347))
3 (declare-const X 2 Real) 3 (assert (>= X 2 -0.499999896))
4 (declare-const X 3 Real) 4

5 (declare-const X 4 Real) 5 ; Unscaled Input 3: (900, 1200)
6 6 (assert (<= X 3 0.5))

7 (declare-const Y O Real) 7 (assert (>= X 3 0.227272727))
8 (declare-const Y 1 Real) 8

9 (declare-const Y 2 Real) 9 ; Unscaled Input 4: (600, 1200)
10 (declare-const Y 3 Real) 10 (assert (<= X 4 0.5))

11 (declare-const Y 4 Real) 1 (assert (>= X 4 0.0))
12 12
13 ; Unscaled Input 0: (36000, 60760) 13 ; unsafe if coc is not minimal
14 (assert (<= X 0 0.679857769)) 14 (assert (or
15 (assert (>= X 0 0.268978427)) 15 (and (<= Y 1Y 0))
16 16 (and (<= Y 2 Y 0))
17 ; Unscaled Input 1: (0.7, 3.141592) 17 (and (<= Y 3 Y 0))
18 (assert (<= X 1 0.499999896)) 18 (and (<= Y 4 Y 0))
19 (assert (>= X 1 0.11140846)) 19))

Something is missing, right?

Languages and tools 25 [52

ACAS-Xu specification in VNN-Lib

© 00 JO O b WN o

©® I >0 8w =0

(declare-const X 0 Real)
(declare-const X 1 Real)
(declare-const X 2 Real)
(declare-const X 3 Real)
(declare-const X 4 Real)

(declare-const Y 0 Real)
(declare-const Y _1 Real)
(declare-const Y _2 Real)
(declare-const Y 3 Real)
(declare-const Y 4 Real)

; Unscaled Input 0: (36000, 60760)
(assert (<= X 0 0.679857769))
(assert (>= X 0 0.268978427))

; Unscaled Input 1: (0.7, 3.141592)
(assert (<= X 1 0.499999896))
(assert (>= X 1 0.11140846))

1
2
3
4
5
6
7
8
9

10

1
12
13
14
15
16
17
18
19

; Unscaled I
(assert (<=

(assert (>=

; Unscaled I
(assert (<=

(assert (>=

; Unscaled I
(assert (<=

(assert (>=

; unsafe if

(assert (or
(and (<=
(and (<=
(and (<=
(and (<=

))

nput 2: (-3.141592,
X 2 -0.498408347))
X 2 -0.499999896))

nput 3: (900, 1200)
X 3 0.5))
X 3 0.227272727))

nput 4: (600, 1200)
X 4 0.5))
X 4 0.0))

coc is not minimal

Y1Y0))
Y2Y0))
Y3Y0))
Y 4Y0))

-3.1315920000000004)

Something is missing, right? Which network are we verifying??

Languages and tools

25/ 52

Limitations of VNNLib

« Does not specify anything regarding the neural network

« Specification size is linear in the size of the input: good luck proofreading
this :)

- Does not represent actual computations (real arithmetic)

Languages and tools 26/ 52

Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses

Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0

Languages and tools 27 [52

Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses
Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0

This property is nhot amenable for provers winners of the VNN-Competition

Languages and tools 27 [52

Limitations of VNNLib

Given nn;,nn,,z € R? ¢ € R « 1 and H(x,, z,,¢) a set of hypotheses
Let the formula Vx, z,,e.H(zy, x,,€) = nny(nny, (z,),x; +€) +nn;(x,) >0

This property is nhot amenable for provers winners of the VNN-Competition

mexlvE'H(anwlag) =

Composition of NN A

-~ —

nn,(nn, , (z;), x;+¢€)4+nn;(z,) >0 p Comparison of outputs
—— - S~———
Multiple NNs Operation on inputs)

Q Languages and tools 27 [52

Limitations of VNNLib

Confidence-based robustness
[22]

Va,x', cond(z,x’,€) A conf(f(x)) > Kk =

class(f(x)) = class(f(z"))

For all couple of inputs, as long as the network
is confident enough in its prediction,
prediction should not change

And a whole family of hyperproperties
(multiple execution traces)

Languages and tools

(@)

class 1

categorical feature x,=v (D)

(c)

class 1
L J
o. ®
class 3
class 2

X4

categorical feature x;=v’

class 1

class 2

e class 4

28 /52

Frustrations to be adressed

 Inaccurate specification language
« No clear way to derive higher-order formulas to VNN-Lib
« Collection of tools that are difficult to install and compare

Languages and tools 29 /52

Frustrations to be adressed with CAISAR

A specification language and a set
of tools to ease formal verification
23]

Free and Open-Source Software with
CAISAR a dedicated manual https://caisar-
platform.com

Languages and tools 30/52

https://caisar-platform.com
https://caisar-platform.com

A richer specification language

{decl)

(type)

{binder)

(spec)

(bop)

CAISAR specification language. Quantifier are partially supported.

type (id) = (type)
predicate (id)
(binder)” = (expr)
function (id)
(binder)” (spec)™ = {expr)
(tId)
(type) — (type)
((type),... {type))
vector (type)
int|bool|float|string
model

(id) | ((id) : (type))
requires {(expr)}
ensures {(expr)}
<lzl<]>

+|=|x[/

Alv]—=

(expr)

(id)

(built-in)

(expr)(expr)

((expr),... (expr})

let (id) = (expr) in
if (expr) then (expr)
else (expr)
(expr)(bop){expr)
forall{binder).{expr)
exists(binder).{expr)
not{expr)

i € Integer

{true, false} € Boolean

f € Float | s € String

Languages and tools

{built-in)

read_model (expr)
length (expr)
has_length (expr) (expr)
(expr)[{expr)]

(expr)@@({ expr)

31/ 52

A richer specification language

Time to read a local robustness specification on MNIST!

Languages and tools 32/52

https://caisar-platform.com/documentation/mnist.html

A richer specification language

theory MNIST

use ieee float.Float64
use caisar.types.Float64WithBounds as Feature
use caisar.types.IntWithBounds as Label

use caisar.model.Model

use caisar.dataset.CSV
use caisar.robust.ClassRobustCSV

constant model filename: string
constant dataset filename: string
[...]

[...]
constant label bounds: Label.bounds =

Label.{ lower = 0; upper =9 }

constant feature bounds: Feature.bounds =

Feature.{ lower = (0.0:t); upper = (1.0:t) }

goal robustness:
let nn = read model model filename in

let dataset = read dataset dataset filename in

robust feature bounds label bounds nn dataset eps

end

let eps = (0.125:t) in (* Need to represent floats explicitly *)

Languages and tools

33/52

A richer specification language

Integrates an automated graph editing technique to integrate
specifications inside of the control-flow, a la neurosymbolic

[Gather(0) [nm

Input (Gather(1) | nm

‘Gather(2) [Add’

Concat]—> L

Add

Gather(0) (resp. Gather(1)) extracts xy (resp. x1) and Gather(2) extracts ¢ from the Input

node. First Add computes x; + €. Nodes | """

Concat prepares nn; inputs.

nmns

Languages and tools

are the inlined nn; and nny control flows.

34 /52

Vehicle

type Image = Tensor Rat [28, 28]
type Label = Index 10

validImage : Image -> Bool

validImage x = forall i j . 0 <= x ! 1 ! j
<=1

@network

classifier : Image -> Vector Rat 10
advises : Image -> Label -> Bool

advises x i = forall j . j !'=1i =>

classifier x ! i > classifier x ! j

@parameter

epsilon : Rat

boundedByEpsilon : Image -> Bool
boundedByEpsilon x = forall i j
<=x ! i ! j <= epsilon

-epsilon

robustAround : Image -> Label -> Bool
robustAround image label = forall
pertubation .

let perturbedImage =
in

boundedByEpsilon pertubation and
validImage perturbedImage =>

advises perturbedImage label

image - pertubation

@parameter(infer=True)
n : Nat

@dataset

trainingImages : Vector Image n
@dataset

traininglLabels : Vector Label n
@property

robust : Vector Bool n

robust = foreach i . robustAround
(trainingImages ! i) (traininglLabels ! i)

A higher-level specification language [24], [25]. Displayed here is the full Vehicle specification for MNIST robustness

Languages and tools

35/ 52

Support of numerous provers

. 9 provers supported (including all VNN-Comp winners)
- reproducible build and experiments thanks to the Nix package manager

A
)\/'

. a repository of examples and (soon) benchmarks from the VNN-Comp

@ Languages and tools 36 /52

On the specification problem

Ll adl AN
—>» {continue, brake, go left,
go right,...}

To verify that system, one first needs to define its inputs

Vx.x € {image with pedestrian} = f(x) = brake

— {contlnue brake go left,
go right,...}

To verify that system, one first needs to define its inputs
Vx.x € {image with pedestrian} = f(x) = brake

What is an image containing a pedestrian? How to specify it?

What makes machine learning hard to verify

Classical :
programs :

Specification
languages

Writer agent

Verification tooling

v
Uown v\N
P .-="", TIntruder

; B

/ I

' 1

A v

A3 G

'\ Ownship .

[

Astree PonSpége
Software = = W 71 leowowas
Compcert 2 / @

[f [/ a2 m Teonich
z3

"~ aTeuer?’ \/

Explicit specification,

derived from
requirements

A team of humans
directly writes the
program

Mature tools

Neural
networks :

High dimensional

specification

>

ming ﬁ(@)

&
X

: A loss minimization
input, data as partial “scheme parametrizes

the program

Languages and tools

Still experimental

39 /52

What makes machine learning hard to verify

Problem space Embedding Embedding space
gap
- M . e . * ------- *
Specification | Specification q Training Training platform
language of @, e, u with = Tensorflow etc.
M~ 4 T
1 |
l \ 1 1
Ni LY *)
ITPs Integration | _________ _ | Verification NN Verifiers
Agda etc. of @ with ¥ of = Marabou etc.

Fig.6: Qutline of Vehicle compiler backends, bridging the Embedding Gap [33.32).

Dashed lines indicate information flow and solid lines automatic compilation.

The embedding gap we describe [26]

Languages and tools 40 [52

(e ArC ﬁg&sggﬂgﬂ%@g‘qﬂ?%&%mi DNTUM;E‘S; GG, ETC) Neural Network specification languages

SITUATION:

THERE ARE
4 COMPETING
STANDARDS.

17! Riplculovs!

WE NEED To DEVELORP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

5ov]

SITUANON:

THERE ARE
15 COMPETING
STANDARDS.

Adapted from Randall Munroe

Closing remarks on the
course

Discussion

Specification languages

« Exploring neuro-symbolic specification using simulators/generators [27], [28]
« Closing the embedding gap as much as possible

- Refining higher-order specification into concrete verification [constraints

Tools

« Ensuring actual soundness of the tool is paramount
« Debug! In a cool way!

« Automate tool configuration ?

@ Languages and tools

43 /52

Discussion

Community

 Help organize the VNN-Comp!

» Propose use cases (Grc:ph Neural Networks?)

« Aim towards other applications!

- Existing venues are growing (AlSafety, SafeComp, workshops in Al/ML AND Verification
Conferences)

Languages and tools 44 [52

Feedback form

You did well and learnt a lot of things!

Feedback form: https:/ / framaforms.org/ feedback-on-essai-course-formal-verification-of-
symbolic-and-connectionist-ai-a-way-toward-higher

Languages and tools 45 [52

https://framaforms.org/feedback-on-essai-course-formal-verification-of-symbolic-and-connectionist-ai-a-way-toward-higher
https://framaforms.org/feedback-on-essai-course-formal-verification-of-symbolic-and-connectionist-ai-a-way-toward-higher

Bibliography

1]

[2]

[3]
[4]
[5]

gﬂps: //[arxiv.org/abs/2405.1061]

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An Efficient SMT
Solver for Verifying Deep Neural Networks,” in Computer Aided Verification, Springer
International Publishing, 2017, pp. 97-117. doi: 10.1007/978-3-319-63387-9_5.

G. Katz et al., “The Marabou Framework for Verification and Analysis of Deep Neural
Networks,” Computer Aided Verification, vol. 11561. Springer International Publishing, Cham,
pp. 443-452, 2019. doi: 10.1007/978-3-030-25540-4_ 26.

H. Wu et al,, “Marabou 2.0: A Versatile Formal Analyzer of Neural Networks.” arXiv, 2024. doi:
10.48550/ARXIV.2401.14461.

O.Isac, C. Barrett, M. Zhang, and G. Katz, “Neural Network Verification with Proof
Production.” [Online]. Available: https://arxiv.org/abs/2206.00512

R. Desmartin, O. Isac, G. Passmore, E. Komendantskayaq, K. Stark, and G. Katz, “A Certified
Proof Checker for Deep Neural Network Verification in Imandra.” [Online]. Available:

Languages and tools 46 [52

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.48550/ARXIV.2401.14461
https://arxiv.org/abs/2206.00512
https://arxiv.org/abs/2405.10611

[6] A.Lemesle, J. Lehmann, and T. L. Gall, “Neural Network Verification with PyRAT.” arXiv, 2024.
doi: 10.48550/ARXIV.2410.23903.

[7] C.Gabreau et al, “A study of an ACAS-Xu exact implementation using ED-324/ARP6983,"
in 12th European Congress Embedded Real Time Systems - ERTS 2024, Toulouse (31000),
France, Jun. 2024. [Online]. Available: https://hal.science/hal-04584782

[8] S.Wang et al, “Beta-CROWN: Efficient Bound Propagation with Per-neuron Split
Constraints for Complete and Incomplete Neural Network Robustness Verification.”
Accessed: Mar. 04, 2022. [Online]. Available: http://arxiv.org/abs/2103.06624

[9] D.M.Lopez, S. W. Choi, H.-D. Tran, and T. T. Johnson, “NNV 2.0: The Neural Network
Verification Tool,” in Computer Aided Verification, C. Enea and A. Lal, Eds., Cham: Springer
Nature Switzerland, 2023, pp. 397-412.

[10] S.Bak, “Nnenum: Verification of ReLU Neural Networks with Optimized Abstraction
Refinement,” in NASA Formal Methods, A. Dutle, M. M. Moscato, L. Titolo, C. A. Munoz, and |.

@ Languages and tools 47] 52

https://doi.org/10.48550/ARXIV.2410.23903
https://hal.science/hal-04584782
http://arxiv.org/abs/2103.06624

Perez, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing,
2021, pp. 19-36. doi: 10.1007/978-3-030-76384-8_ 2.

[1] F.Ranzato and M. Zanellg, “Robustness Verification of Support Vector Machines,” in Static
Analysis, B.-Y. E. Chang, Ed.,, Cham: Springer International Publishing, 2019, pp. 271-295.

[12] H.Duong, L. Li, T. Nguyen, and M. Dwyer, “A DPLL(T) Framework for Verifying Deep Neural
Networks.” 2023.

[13] V.Tjeng, K. Xiao, and R. Tedrake, “Evaluating Robustness of Neural Networks with Mixed
Integer Programming,” presented at the International Conference on Learning
Representations (ICLR), 2019. Accessed: Jun. 19, 2019. [Online]. Available: https://
openreview.net/pdf?id=HyGIdiRgtm

[14] C.Urban and A. Miné, “A Review of Formal Methods Applied to Machine Learning,”
arXiv:2104.02466 [cs], Apr. 2021.

@ Languages and tools 48 [52

https://doi.org/10.1007/978-3-030-76384-8_2
https://openreview.net/pdf?id=HyGIdiRqtm
https://openreview.net/pdf?id=HyGIdiRqtm

[15] D.Zombori, B. Banhelyi, T. Csendes, |. Megyeri, and M. Jelasity, “Fooling a Complete Neural
Network Verifier,” in International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=4iwieFS44l

[16] R.Elsaleh and G. Katz, “DelBugV: Delta-Debugging Neural Network Verifiers.” arXiv, 2023.
doi: 10.48550/ARXIV.2305.18558.

[17] S. Demarchi, D. Guidotti, L. Pulina, and A. Tacchella, “Supporting Standardization of Neural
Networks Verification with VNN-LIB and CoCoNet.” in 6th Workshop on Formal Methods for
ML-Enabled Autonomous Systems, Jul. 2023.

[18] C. Brix, M. N. Muller, S. Bak, T. T. Johnson, and C. Liu, “First Three Years of the International
Verification of Neural Networks Competition (VNN-COMP).” 2023.

[19] C.Brix, S. Bak, C. Liu, and T. T. Johnson, “The Fourth International Verification of Neural
Networks Competition (VNN-COMP 2023): Summary and Results.” 2023.

@ Languages and tools 49 /52

https://openreview.net/forum?id=4IwieFS44l
https://doi.org/10.48550/ARXIV.2305.18558

[20] C.Brix, S. Bak, T. T. Johnson, and H. Wu, “The Fifth International Verification of Neural

[21]

[22]

[23]

Networks Competition (VNN-COMP 2024): Summary and Results.” [Online]. Available:
https.//arxiv.org/abs/2412.19985

C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library (SMT-LIB).”
2016.

A. Athavale, E. Bartocci, M. Christakis, M. Maffei, D. Nickovic, and G. Weissenbacher,
“Verifying Global Two-Safety Properties in Neural Networks with Confidence,” in Computer
Aided Verification, A. Gurfinkel and V. Ganesh, Eds., Cham: Springer Nature Switzerland,
Jun. 2024, pp. 329-351. doi: 10.48550/arXiv.2405.14400.

M. Alberti, F. Bobot, Z. Chihani, J. Girard-Satabin, and A. Lemesle, “CAISAR: A platform for
Characterizing Artificial Intelligence Safety and Robustness,” in AiSafety, in CEUR-
Workshop Proceedings. Vienne, Austria, Jul. 2022. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-03687211

g Languages and tools 50 [52

https://arxiv.org/abs/2412.19985
https://doi.org/10.48550/arXiv.2405.14400
https://hal.archives-ouvertes.fr/hal-03687211
https://hal.archives-ouvertes.fr/hal-03687211

[24] M. L Daggitt, W. Kokke, R. Atkey, L. Arnaboldi, and E. Komendantskya, “Vehicle: Interfacing
Neural Network Verifiers with Interactive Theorem Provers.” [Online]. Available: https://
arxiv.org/abs/2202.05207

[25] M. L Daggitt, W. Kokke, R. Atkey, N. Slusarz, L. Arnaboldi, and E. Komendantskaya, “Vehicle:
Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs.” arXiv, 2024.
doi: 10.48550/ARXIV.2401.06379.

[26] L. C.Cordeiro et al, “Neural Network Verification is a Programming Language Challenge,”
2025, doi: 10.48550/ARXIV.2501.05867.

[27] J. Girard-Satabin, G. Charpiat, Z. Chihani, and M. Schoenauer, “CAMUS: A Framework to
Build Formal Specifications for Deep Perception Systems Using Simulators,” in ECAI 2020 -
24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, Jun.
2020. [Online]. Available: https://halinria.fr/hal-02440520

[28] X. Xie, K. Kersting, and D. Neider, “Neuro-Symbolic Verification of Deep Neural Networks,” in
goceedings of the Thirty-First International Joint Conference on Artificial Intelligence,

Languages and tools 51/ 52

https://arxiv.org/abs/2202.05207
https://arxiv.org/abs/2202.05207
https://doi.org/10.48550/ARXIV.2401.06379
https://doi.org/10.48550/ARXIV.2501.05867
https://hal.inria.fr/hal-02440520

IJCAI-22, L. D. Roedt, Ed., International Joint Conferences on Artificial Intelligence
Organization, 2022, pp. 3622-3628. doi: 10.24963/ijcai.2022/503.

Languages and tools 52 [52

https://doi.org/10.24963/ijcai.2022/503

	Summing up before going further
	What we have seen so far
	A due reminder
	Content of this last session

	Tools
	Representing neural networks
	Marabou (Complete SMT Solver)
	Core features

	PyRAT (Abstract Interpretation Solver)
	Core features

	α−β−CROWN (Abstract Interpretation Solver)
	Other tools
	Some observations
	Evaluating those tools
	The International Verification of Neural Network Competition (VNN-Comp)
	On tools disagreements
	Limitations
	So should I abandon all hope?

	Languages
	VNN-Lib
	ACAS-Xu specification in VNN-Lib
	Limitations of VNNLib
	Frustrations to be adressed
	Frustrations to be adressed with CAISAR
	A richer specification language
	Vehicle
	Support of numerous provers

	On the specification problem
	What makes machine learning hard to verify

	Closing remarks on the course
	Discussion
	Specification languages
	Tools
	Community

	Feedback form

	Bibliography

