list
]

Design, Test, Repair: Software Quality for Neural
Networks

ESSAI 2025

Julien Girard-Satabin
Zakaria Chihani
Dorin Doncenco

CEA LIST
2025-07-03

This work was supported by the French Agence Nationale de la
Recherche (ANR) through SAIF (ANR-23-PEIA-0006) and
DeepGreen (ANR-23-DEGR-0001) as part of the France 2030
programme.

Recaps on previous course

Local robustness (Katz et al. 2017)

Let a classifier f : X' — Y. Given x € X and ¢ € R « 1 the problem of local
robustness is to prove that Vz'. |z — 2’|, <e — f(z) = f(2)

Bugfixing Neural Networks 2/73

3/73

This session

1. Testing neural networks with logical relations

2. Budgfixing neural networks, with guarantees

3. Encoding logical constraints within neural networks

4. Open questions on properly evaluating the « quality » of ML programs

Bugfixing Neural Networks 4/73

A brief introduction on
testing

How do you ensure your program « works well »?

What are the most common bugs/malfunctions you encounter?

How do you ensure your program « works well »?
What are the most common bugs/malfunctions you encounter?

« humerical instabilities that invalidated two submissions we tried to
reproduce

* debugging shapes : funniest thing to do ever

See this image and copyright information in PMC

Fig 2. CNN to predict hospital system detects both general and specific image
features. (A) We obtained activation heatmaps from our trained model and averaged
over a sample of images to reveal which subregions tended to contribute to a hospital
system classification decision. Many different subregions strongly predicted the correct
hospital system, with especially strong contributions from image corners. (B-C) On
individual images, which have been normalized to highlight only the most influential
regions and not all those that contributed to a positive classification, we note that the CNN
has learned to detect a metal token that radiology technicians place on the patient in the
corner of the image field of view at the time they capture the image. When these strong
features are correlated with disease prevalence, models can leverage them to indirectly
predict disease. CNN, convolutional neural network.

(zech et al. 2018) @& « actually dead inside

Firstintroduction of testing on ML

ACCtest

Xtest

§ = acc,,,;, — acC (replace accuracy by other suitable metric in RL or
unsupervised learning)

E Bugfixing Neural Networks 8/73

Firstintroduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

« which scenarios?

» how do they generalize?
« what is the expected behaviour under test?

« how can the test exhibit and help us understand a program failure?

@ Bugfixing Neural Networks

9/73

Firstintroduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

« which scenarios?
» on unseen test data
» how do they generalize?

« what is the expected behaviour under test?

« how can the test exhibit and help us understand a program failure?

@ Bugfixing Neural Networks

9/73

Firstintroduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

« which scenarios?
» on unseen test data
» how do they generalize?
— good question!
« what is the expected behaviour under test?

« how can the test exhibit and help us understand a program failure?

@ Bugfixing Neural Networks

9/73

Firstintroduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

« which scenarios?
» on unseen test data
» how do they generalize?
— good question!
« what is the expected behaviour under test?
» controlled metric degradation
« how can the test exhibit and help us understand a program failure?

@ Bugfixing Neural Networks

9/73

Firstintroduction of testing on ML

Testing a program

The activity of running a program on a predefined scenario, and assess the program’s
output against an expected behaviour (an oracle)

« which scenarios?
» on unseen test data
» how do they generalize?
— good question!
« what is the expected behaviour under test?
» controlled metric degradation
« how can the test exhibit and help us understand a program failure?
» identify spurious counterexample?

@ Bugfixing Neural Networks

9/73

Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)

Bugfixing Neural Networks 10/73

Testing for neural network - the question of
scenario

Crucial component of testing is to identify the correct scenarios

Since the search space is enormous, one needs to find relevant scenarios
(accidents are hopefully rare in a dataset drawn from real life)

Generating scenarios!

Bugfixing Neural Networks 10/73

Testing for neural network - the question of
scenario

Figure 8: Inconsistency of steering angle prediction on real and synthesized images.
Impact of generated scenarios (from (Zhang et al. 2018))

Other examples (Pei et al. 2017; Sun et al. 2018; Tian et al. 2017; Dolg, Dwyer, and Soffa 2021; Adjed
et al. 2022)

E Bugfixing Neural Networks n/73

Another approach: Metamorphic testing

Certain relationships (e.g., R;, R,) on

. Input x
some inputs (e.g. a, b, ¢) should)
induce, in a software S, other — —\
relationships (e.g., R}, R}) @ | \
Va,b,c, Ry(a,b) A Ry(b,c) = ;-}’=p(x') ‘l.y’=p’(x)
R (S(a), 5(b)) vV 75(5(b), 5(c) . ==
Example: computing the shortest \\ aartosn
path between two nodes on an o
undirected graph should be Stability

impervious to symmetry

@ Bugfixing Neural Networks 12/73

Another approach: Metamorphic testing

Blur images are not expected to be
under the system scope

Bugfixing Neural Networks 13/73

Metamorphic testing with AIMOS

AIMOS: Al Metamorphic Observing
Software (Lemesle et al. 2023)

Assess the stability of a welding
production line (in particular: able to
spot that a model was performing
too well outside of its dedicated
scope)

Stability of the models on the C10, C20 and C34 welds for the blur propei
size ranging from 1 to 20. Value points are linked only for aesthetic consic
rove readability as AIMOS does not perform interpolation.

@ Bugfixing Neural Networks 14 /73

Metamorphic testing with AIMOS

Try AIMOS at https://caisar-platform.com/aimos-demo

Bugfixing Neural Networks 15/73

https://caisar-platform.com/aimos-demo

Metamorphic testing with AIMOS

(a) Original driving (b) Original driving (c) Original driving (d) Original driving (e) Original driving

scene scene scene scene scene

(f) Add a pedestrian (g) Add a slow sign (h) Remove a lane line (i) Replace buildings (j) Transform to a night
with trees scene

A declarative framework for Metamorphic Testing (Deng et al. 2023) with automated rule
inference from natural language and generative Al for scendrio generation

E Bugfixing Neural Networks 16 /73

Industrial tools for testing ML

m| (o8 ML Docs ¥ API Reference GitHub 4

MLflow MLflow

MLflow 3.0 @

Getting Started #

MLflow: A Tool for Managing the
Machine Learning Lifecycle

Deep Learning
. MLflow is an open-source platform, purpose-built to assist machine learning
Build * practitioners and teams in handling the complexities of the machine learning process.
MLflow Tracking MLflow focuses on the full lifecycle for machine learning projects, ensuring that each

phase is manageable, traceable, and reproducible.
MLflow Model @

MLflow Datasets £

MLflow Getting Started Resources

Evaluate @

If this is your first time exploring MLflow, the tutorials and guides here are a great place
to start. The emphasis in each of these is getting you up to speed as quickly as possible
Team Collaboration with the basic functionality, terms, APIs, and general best practices of using MLflow in
order to enhance your learning in area-specific guides and tutorials.

Deploy =&

API References

More Learn about MLflow MLflow Models Traditional Deep
MLflow Basics Introduction ML Learning

MLflow: one state-of-the-art platform for evaluating and monitoring machine learning

Bugfixing Neural Networks 17 /73

« Program testing can be used very
effectively to show the presence of
bugs but never to show their
absence.» (Dijkstra 1976)

On the interest of bugfixing
with formal verification

Bugfixing?

Bugfixing neural networks

Given an input z, a neural network f, a faulty prediction f(z) = y;,,, and
an expected prediction y,,,... bugfixing means constructing a new f’
such that /@) =y,

Bugfixing Neural Networks 19/73

Why bugfixing in the first place?

« Retraining may be too costly
« Some behaviours must be preserved
« Particular datapoints must absolutely not fail

Bugfixing Neural Networks 20/73

Formal verification to the rescue

& Safe

- % —eeaaae —_— —_— : ’ Unknown
Input Layer 1 Layer n
Unsafe

Bugfixing Neural Networks 21/73

Definition

Guaranteed Neural Network repair (Goldberger et al. 2020)

Given a NN f: 2 — g, a collection of inputs X = {z,, ...,z }, a precondition
that holds on all inputs P(X') and a postcondition on all outputs Q(¥),
find a new DNN f” such that P(X) F Q(¥) and that the distance between
fand f’ is minimal.

Note that, as with local robustness (see Session 2), this property is local

Q Bugfixing Neural Networks 22 /73

Exemple

Computing the distance between f ..

Bugfixing Neural Networks 23/73

Exemple

Bugfixing Neural Networks 23/73

Exemple

-1 1.5
”f _ f{/}”L — 27{2:2} Z{jzl} Z{kzl}“/Vi[j,k] o I/Vz{/}[]? k”L

Bugfixing Neural Networks 23/73

Exemple

-1 1.5
”f _ f{/}”L — 27{2:2} Z{jzl} Z{kzl}“/Vi[j,k] o I/Vz{/}[]? k”L

1—=15]+|=2+3|+2—1|+|—=14+05]+|1=05|+|=14+15|+|-14+1|+|1—-1] =

0.5 + 1| + |1| +| — 0.5 +]0.5| + 0.5/ + 0+ 0 =4

Bugfixing Neural Networks 23/73

Exemple

Find the best w,

[+w, 1+wg

Search space is now no more the inputs, but the weights

@ Bugfixing Neural Networks 24 [73

Exemple

[+w, I+wg Providing we want to get ni > ng, that is to say,
ensure that

ReLU(—1 + wg)n, + ReLU(1 + wg)nj >
ReLU(1 + ws)n} + ReLU(—1 + w,)n]

~I+w, [+w; ReLU(—1 + wg)(ReLU(1 + wy)n{ + ReLU(—2 + w3)nd) +
ReLU(1 + wg)(ReLU(2 + wy)ni + ReLU(—1 + w,)ng) >
ng = ReLU(1 + w;)nd + ReLU(—2 + ws)nd (1-+wg) (ReLU(2 + vy 4)mo)

) . . ReLU(1 + w;) (ReLU(1 + w,)n! + ReLU(—2 + wy)ng) +
m = ReLUQ@ +wy)ny +ReLU(=1+wy)ng p o gy wy)(ReLU(2 + wy)nd + ReLU(—1 + w,)nd)
nZ = ReLU(1 + ws)n + ReLU(—1 + w,)n]
ni = ReLU(—1 + wg)ng + ReLU(1 + wg)ni

Bugfixing Neural Networks 25 /73

Rephrasing the problem

Key insight: for a given set of inputs, the network is in a fixed state

Bugfixing Neural Networks 26 /73

Rephrasing the problem

1+w,] Given n] = 3 and nJ = 4

np = (1+w;)3 + (—2 + w;)4
ni = (24+wy)3+ (—1+w,)4
ng = ReLU(n}) + ReLU(—n7)
ny = ReLU(—n}) + ReLU(n7)

Bugfixing Neural Networks 27173

Rephrasing the problem

1+w,] Given n] = 3 and nJ = 4

ny = (14 wy)3 4+ (—2 + wy)4
nt = (2+wy)3+ (—1+w,)4

nZ = ReLU(3w; + 4w; — 5) — ReLU (3w, + 4w, + 2)
n? = —ReLU(3w; + 4w; — 5) + ReLU (3w, + 4w, + 2)

Bugfixing Neural Networks 27173

Rephrasing the problem

[+w,] Given 'n,(l) = 3 and n8 =4

ng = (14+w;)3+ (—2+ wy)4
ni = (24 wy)3 + (=1 +wy)4

nZ = ReLU(3w; + 4w; — 5) — ReLU (3w, + 4w, + 2)
ny =

= —ReLU(3w; + 4w5 — 5) + ReLU (3w, + 4w, + 2)
Then, checking whether n? > nZ is a
problem only in the variables w,

@ Bugfixing Neural Networks 27 /73

Rephrasing the problem

[+w, I

Then, checking whether n? > nZ is a
problem only in the variables w,

Given n] = 3 and nJ = 4

2
ng =
2
ny =

ng = (14+wp)3 + (—2 + wy)4

ny = (2+wy)3 + (=14 w,)4
= ReLU(3w; + 4w — 5) — ReLU (3w, + 4w, + 2)
= —ReLU(3w; + 4w5 — 5) + ReLU (3w, + 4w, + 2)

Bugfixing Neural Networks 27173

Rephrasing the problem

Given n] = 3 and nJ = 4

Bugfixing Neural Networks

n

ng = (1+w;)3 + (=2 + w3)4
ni = (2+wy,)3 + (—1+w,)4
3 = ReLU(Bw; + 4w3 — 5) —

ReLU (3w, + 4w, + 2)
—ReLU(3w; + 4w; —5) +
ReLU (3w, + 4w, + 2)

28 /73

Rephrasing the problem

Given n] = 3 and nJ = 4

ng = (1+w;)3 + (=2 + w3)4
ni = (2+wy,)3 + (—1+w,)4
na = ReLU(3w; + 4w; — 5) —

ReLU (3w, + 4w, + 2)
ReLU (3w, + 4w, + 2)

Local robustness on the weights!

Bugfixing Neural Networks 28 /73

Rephrasing the problem

Bugfixing NN(network f, Precondition P, Postcondition @, Collection of inputs X, Layer L):
1 f'=f

2 1 =[]

3 for z in X:

4 if CHECK(f’,P,Q,z) = SAT then:
5 APPEND(1, 1)

6 else:
7
8
9

g = BUILD_SYMBOLIC_WEIGHT_NET(f ,P,Q,L)
f/ = ASSIGN_WEIGHTS(f ,w,P,Q) // NN with weights tricks
CHECK(f’,P,Q,x)

10

11 f” = COMBINE_NETS(1)

12 if CHECK(f”,P,Q):

13 return f”

14 else:

15 RESTART

@ Bugfixing Neural Networks 29 /73

Find the minimal weights
perturbations that preserves a
heural network behaviour

Initial limitations

Nl::;?;j of Average Minimal Maximal Average Minimal Maximal
marks cha.nge cha.ngc cha.ngc accuracy accuracy accuracy
0 0 0 0 0.97 0.97 0.97
1 0.34 0.3 0.38 0.87 0.86 0.88
2 0.43 0.3 1.83 0.79 0.76 0.88
3 0.53 0.33 1.79 0.71 0.66 0.88
4 0.68 0.33 1.79 0.64 0.57 0.88
5) 0.79 0.33 1.87 0.59 0.47 0.8
6 0.89 0.35 1.83 0.53 0.38 0.78
7 1.05 0.34 1.91 0.48 0.28 0.78
25 1.86 1.45 2.09 9.49-1072%2 | 2.7-1073 0.41
50 2.05 1.9 2.15 4.89-102 2.3-1073 0.2
75 2.13 2.03 2.17 5.95-1072% | 2.8-107° 0.18

100 2.18 2.18 2.18 5.11-1072 | 5.11-1072 | 5.11-1072

From (Goldberger et al. 2020). Large modifications result in neural network degradation

Bugfixing Neural Networks

30/73

Initial limitations

When we ran Algorithm 1 on our ACAS Xu DNN in question,|it failed to terminate|— we
stopped 1t after several days| while it was attempting to verify ¢ after the third modification
was applied to the network. Thus, while we were unable to verify that all violations of ¢ was
removed from N, we did obtain a network in which at least some of the original violations
no longer exist. The results are depicted in Fig. 11. When we examined the counter-examples
discovered by the algorithm during its iterations, we observed that they were fairly distant from
each other indicating that the violation is question was not minor, and possibly explaining
the difficulty in correcting it.

From (Goldberger et al. 2020). Several days to fix three inputs seems too much..

@ Bugfixing Neural Networks 30/73

Initial limitations

Why is so? Because actually encoding « Preserve the accuracy » is a difficult
property that cannot be expressed with convex sets!

Bugfixing Neural Networks 31/73

Initial limitations

We still want to preserve the benefits of formal bugfixing!
« No need to retrain the network

« Guarantee to keep behaviours on given inputs

Main limitations;

- Modifying only one single layer limits the scope of our debugging
« Prover queries can be expensive (See Session 2 on theoretical complexity)

@ Bugfixing Neural Networks

32/73

Multi-layer reparation

A neural network f is considered a composition of subnetworks f, such that
f=foofiofs. of,. The outputlayer of f, , is the input layer of f,. This layer
is present in the original network as L,.

Bugfixing Neural Networks 33/73

Multi-layer reparation

A neural network f is considered a composition of subnetworks f, such that

f=foofiofs. of,. The outputlayer of f, , is the input layer of f,. This layer
is present in the original network as L,.

Each single layer modification procedure is then launched on the f,s, their
distance against the original f, is computed and summed up.

Bugfixing Neural Networks 33/73

Multi-layer reparation

A neural network f is considered a composition of subnetworks f, such that

f=foofiofs. of,. The outputlayer of f, , is the input layer of f,. This layer
is present in the original network as L,.

Each single layer modification procedure is then launched on the f,s, their
distance against the original f, is computed and summed up.

To reuse Single Layer Repair, we need to provide input/output constraints to
intermediate layers

@ Bugfixing Neural Networks 33/73

Multi-layer reparation
0.01 1000]

Bugfixing Neural Networks 34 /73

Multi-layer reparation

1000

0.01

Bugfixing Neural Networks

3473

Multi-layer reparation

Bugfixing Neural Networks

3473

Multi-layer reparation

1000

!

Bugfixing Neural Networks

35/73

Multi-layer reparation
0.01

0.01

100

100

11

-11

Bugfixing Neural Networks

ng=1=nf=11>n5=—11.

0.01 Target behaviour for nf : n{ < nj

36/73

Multi-layer reparation
0.01

0.01

100

ng=1=ni=11>nj=—11.
0.01 Target behaviour for n) : nf < nj

Three main steps:
100 1. Assign modified input and
outputs bounds to each

subnetwork

2. Perform 1-layer verification
query to reach the expected
behaviour

3. Combine all 1-layer
modifications

Bugfixing Neural Networks 36/73

Multi-layer reparation
0.01

0.01

100

0.01

100

Target behaviour: nf < nj

1. Propose assignemts:
« f1:n3=0 (n% stay
unchanged)
* faimg<ni
2. Apply Single Layer Repair on f;
and f,
3. Merge f{ and f;

Bugfixing Neural Networks 37/73

Multi-layer reparation
50

Target behaviour: nf < nj

0.01 1. Propose assignemts:
* fi: ng =0 (n% stay
100 unchanged)
100 * foimg <mny
f 2. Apply Single Layer Repair on f;
and f,
3. Merge f; and f;

0.01

100

Bugfixing Neural Networks 37/73

Multi-layer reparation
50

Target behaviour: nf < nj

0.01 1. Propose assignemts:
* fi: ng =0 (n% stay
100 unchanged)
100 * foimg <mny
f 2. Apply Single Layer Repair on f;
and f,
3. Merge f; and f;

0.01

100

Bugfixing Neural Networks 37/73

Multi-layer reparation
50

Target behaviour: nf < nj

0.01 1. Propose assignemts:
* fi: ng =0 (n% stay
100 unchanged)
100 * foimg <mny
f 2. Apply Single Layer Repair on f;
and f,
3. Merge f; and f;

0.01

100

Bugfixing Neural Networks 37/73

Multi-layer reparation

Multi-layer DNN bugfixing(network f, Collection of inputs X, Layer indices J, timeout ¢):
1 for j in card(X):

2 assigns = f(z;) // Compute value assignments for each layer
3 fo,nfu = SPLIT(F,7)

4 best_change, best_cost = 1, o

5 while ¢t not exceeded:

6 for (e J:

7 ¢, = PROPOSE_CHANGE()

8 for j in card(X):

9 assigns = assigns + ¢; // New assignments to prepare SLD

10 for (e J:

11 f],cost;=SLD(f}, < x,, assigns, >, ..., < x,assigns, >) // Perform Single Layer Debugging

12 cost = TOTAL_COST(costg,...,costy)

13 if cost < best_cost:

14 best_cost = cost

15 best_change =< f{, ..., f >

16 return best_cost, COMBINE(best_change)

E Bugfixing Neural Networks 38/73

Multi-layer reparation

How to propose assignments?

Existing approaches use random search (but could be enhanced)!

Bugfixing Neural Networks 39/73

Multi-layer reparation

Number of

water- Average Minimal Maximal Average Minimal Maximal
marks change change change accuracy accuracy accuracy
0 0 0 0 0.97 0.97 0.97
1 0.34 0.3 0.38 0.87 0.86 0.88
2 0.43 0.3 1.83 0.79 0.76 0.88
3 0.53 0.33 1.79 0.71 0.66 0.88
4 0.68 0.33 1.79 0.64 0.57 0.88
] 0.79 0.33 1.87 0.59 0.47 0.8
6 0.89 0.35 1.83 0.53 0.38 0.78
7 1.05 0.34 1.91 0.48 0.28 0.78
25 1.86 1.45 2.09 9.49 . 1072 2.7-1073 0.41
50 2.05 1.9 2.15 4189-1072 | 2.3-107° 0.2
i) 2.13 2.03 217 5.95- 1072 2.8-1073 0.18
100 2.18 2.18 2.18 511.1072 | 5.11.1072 | 5.11-1072

From (Goldberger et al. 2020). Large
modifications result in neural network
degradation

Exp. |Search | Number | Average | Minimal | Maximal | Average | Minimal | Maximal
|Strategy | of input | Change | Change | Change | Accu- Accu- Accu-
points racy racy racy

Random 0.1520 | 0.0615 | 0.4922 | 0.6865 | 0.1916 | 0.9308
Greedy 1 0.0133 0.001 0.0566 0.943 0.7971 | 0.9576

1 MCTS 0.0139 0.001 0.0566 0.943 0.7971 | 0.9576
Random 0.197 0.0791 | 0.4775 | 0.6302 | 0.2563 | 0.9161
Greedy 2 0.0463 | 0.0058 | 0.1435 | 0.9245 | 0.7417 | 0.9598
MCTS 0.0478 | 0.0058 | 0.1484 | 0.9261 | 0.7398 | 0.9594
Greedy 1 0.0305 | 0.0029 | 0.1699 | 0.9397 | 0.9565 | 0.5856

9 1-Layer 0.0307 | 0.0029 | 0.1875 | 0.9394 0.585 0.9562
Greedy 9 0.0459 | 0.0039 | 0.2041 | 0.9178 | 0.3124 | 0.9576
1-Layer 0.0464 | 0.0039 0.208 0.9163 | 0.3124 | 0.9576
| 3 |Greedy-3] 1 [0.25097 | 0.25097 | 0.25097 | 0.886 | 0.886 [0.886 |

From (Refaeli and Katz 2021) . Proper search

Bugfixing Neural Networks

performance degradation.

space pruning with MCTS result in less

40/73

Delta-debugging

Delta-debugging (zeller and Hildebrandt 2002)

Given an input z and a program f that fails, delta-debugging consists
on finding the smallest =’ such that f(z") still fails.

Useful to reduce the complexity of the input

Somehow related to abductive explanations you saw yesterday in Session 3

g Bugfixing Neural Networks 41/73

Delta-debugging

Application: finding bugs in neural networks verifiers (Elsaleh and Katz 2023)
The input is then the network that goes through numerous simplifications/
modifications passes

Obtained neural networks are very thin, which shows that neural network
verifiers are still yet to mature

Bugfixing Neural Networks 42 (73

Encoding constraints during
training

Differentiable Logics

(Slusarz et al. 2023) being a good introductory paper

Llet ® = P(X) E Q(Y)

Given a condition ¢ to hold, one wants to generate £4 such that a network
trained with £ = £, .. + £4 will both perform its intended purpose and

respects P!

Bugfixing Neural Networks 44 [73

Differentiable Logics

Two components:
- encode ® (oF LRA? Convex sets? More complex logical languages'?)

* interpret ® as an actual loss £

'See Benedikt and Daniel’s course, or the Datalog one

@ Bugfixing Neural Networks 45 /73

Differentiable Logics

What we would need: write local robustness under ®
« defines vectors

« unbounded quantifiers

 defined domains for propositional variables

Bugfixing Neural Networks 46 [73

Differentiable Logics

(Slusarz et al. 2023) provides a Logics for Differentiable Logics that provides
automated translation of logical formulaes to actual function losses

Implemented in the Vehicle (Daggitt et al. 2024) language and tool

Bugfixing Neural Networks 4773

Differentiable Logics

J(ay < ag) = 1——rnax(91:32 O)

a,+as’

J(p1 Apa) =T (p1) * T (py)
J(p1 = py) :=1=T(p1) +T(p1) * T (py)
Thus, local robustness would be:

7(1560) ~ () <) = 1 = (A O

With Vehicle:

@property

robust : Vector Bool n

robust = foreach i . robustAround
(trainingData ! i) (traininglLabels ! 1)

@ Bugfixing Neural Networks

48[73

Differentiable Logics

J(ay < ag) = 1——rnax(91:32 O)

a;tasy’

J(p1 Apa) =T (p1) * T (py)
J(p1 = py) :=1=T(p1) +T(p1) * T (py)
Thus, local robustness would be:

7(1560) ~ () <) = 1 = (A O

With Vehicle:

@property

robust : Vector Bool n

robust = foreach i . robustAround
(trainingData ! i) (traininglLabels ! 1)

This then can be compiled directly to Python

from vehicle lang.compile import Target,
to python

spec = to python(
"mnist-robustness.vcl",
target=Target.LOSS DL2,
samplers={"pertubation":

sampler for pertubation},

)

robust loss fn = spec["robust"]

@ Bugfixing Neural Networks 48 /73

On LLMs and scoping your
systems

LS i
. N ¥

Ml Wy

e Wipa e Ly U
- ¥ - ” - .rr.r-; ﬁ “-H_

E”MOJ&U‘IU‘-'-J

TBLSET TABLE
B

(&

/

[
'4
4
MTH DEL
HISTM EVALN C SYMBP &=
ASIN ACDS
vX R SIN S COS 1
#*
EEX V /=W X X /XY
/ v EXPALN TH FANAMNCE

7 8 9

usir S8

CAIC MATRICES CONYERT
a s

ARTH

1

0

Source of all following image: https.//limitesnumeriques.fr/travaux-
productions/ai-forcing (in french)

https://limitesnumeriques.fr/travaux-productions/ai-forcing
https://limitesnumeriques.fr/travaux-productions/ai-forcing

p =M By WS X 4 Ceee @ # signin
WhatsApp H & Q roxane (S Meta Al@ .
* . ' with Llama 3.2 5 i s H e o o
Bllteal Edit Corvent E-Sigr ind text or tools Q S =] @ <&
[Photos [k Videos = Links p d ; All toals * £e Monde
E Le Monde (site web)
[exportaprs a pixels, jeudi 28 mars 2024 - 13:41 UTC +0100 1463 mots @
G dicapr . - 5 - [F
2, Six solutions concrétes pour rendre nos appareils
and policies m P i "
s B caeste % électroniques plus durables B
Combine fles i P
A, Micolas Six
S roxane e & La législation progresse et aide les consemmateurs a conserver leurs appareils
¢ s == 2 plus longtemps, mais I'Etat et les fabricants pourraient aller bien plus loin.
recette air fryer ninja B A pssistant
A lovely and unique name! Roxane is of .
Persian origin, meaning "dawn" or "bright". 3 e T iic, l'innevation tourne au ralenti Les conso
It's a name with a rich history, famously - d2 raisons de changer dordinateur, téléviseur, tablets ou mobile ou'l v 3 dix ans. Et s leurs appareils
borne by the wife of Alexander the Great,] Requeste-signatures Termbent Toujouns &n panng, depuis 2021 lindice de répambilité peut e sider i cheisir dos appareils durables,
% Bt depuis 200% = bonus mis en plage par I'Etat réduit le colt des
Roxana. [f) scansocR
tphones, la figur @ £ I F &
In literature, Roxane is also the name of the @ pooteet 2 POT £l
heroine in Edmond Rostand's play "Cyrano +2ntre 2015 2 2079, selon un =
de Bergerac” D Redact 2 FOT v s, s pstes 61 de f dist i de
Roxane <3 : o When text selected 2
r.nas r Do you have a special connection to Plus g2 &0 % des smartohones continuent toutefois détre remplacss par leurs wtilisateurs a
the name Roxane, or would you like to B Pueparealom fanctic At e elon le barometre du numérque 3091 de lArcap, Autant de te VAL
know more about its history and cultural 2u placard qui &5 déchets et ne sant que partieliemant, recyclés. Voicl gueloues pistes avancéss 2
significance? o par les organisations militantes pour arméliorer s durabilité des apparels et minimiser lsur impact carbone.
Des 2016, Fassoclation Halte & lobsolescence gl dans son vieeur c
S pourgual ne pas I3 pralonger 7 La Scan: £ portée A trofs ans en B
S R P e pour dort les smartphones. Le drait communau g
= 4 ieants ans wrm, =%
iz it pas d'exiger davantage. Un prolangement aursit deux vertus, selon HOP : pousser les fabricants &
Updates Communities biers plus dursbles et plus réparables, et une sécurité prolongée aux consommate: i % Q

Demander a 'Assistant |1A

N0

. *4+ Ask Al
j/,_J +

@ Posez des questions sur votre
document

?\ = Summarize

Brainstorm ideas

0 Obtenez des informations clés 3 'aide
de prompts vocaux

Gemini Al Assistant

Utilisez les réponses de 'lA pour créer
des e-mails, des présentations, etc.

Meet the new Notion Al

- J

Pas maintenant Essayer

maintena
nt

Requirements (or the lack of thereof)

Demander a ['Assistant |A

@ Posez des questions sur votre
document

2“-‘ ‘= Summarize

U Brainstorm ideas
Obtenez des informations clés 3 |'aide
de prompts vocaux

P Utilisez les réponses de l'lA pour créer
des e-mails, des présentations, etc.

Meet the new Notion Al

e

One Al tool that does it all. Search, generate, analyze, and

chat—right inside Notion,

Pas maintenant Essayer

maintena
nt

Bugfixing Neural Networks 5473

Requirements (or the lack of thereof)

See how Copilot can be used to help for software engineering
. https.//github.com/dotnet/runtime/pull/115762
. https.//github.com/dotnet/runtime/pull/115743
- https.//github.com/dotnet/runtime/pull/115733

Bugfixing Neural Networks

55 /73

https://github.com/dotnet/runtime/pull/115762
https://github.com/dotnet/runtime/pull/115743
https://github.com/dotnet/runtime/pull/115733

Requirements (or the lack of thereof)

Conflation of words between « Al Safety » and « Software Risks »

The term “safety” has come to have a multitude of definitions within Al, which vary based on the
context and the community. These definitions have not fully captured the broader meaning of
“safety” used within the fields of Systems and Safety Engineering, and may in fact be a direct
contradiction to it. Within the context of Al communities, some have defined “safety” as the
prevention of failures due to accidents, while others refer to the field of Alignment, aiming to
steer Al systems toward human-oriented values and goals. Not only are Alignment measures
subjective at best, but they fundamentally conflate safety properties with system requirements,
which are well-established engineering concepts.

— From (Khlaaf 2023)

@ Bugfixing Neural Networks 56 /73

Requirements (or the lack of thereof)

- Unscoped programs cannot be properly tested
« Most of LLMs discourse in the industry does not define bounds on the

system operation
« Some work on Software Engineering: Operational Design Domain'’

'See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1426

@ Bugfixing Neural Networks 57 /73

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1426

Requirements (or the lack of thereof)

Why GenAl Breaks Traditional MLOps

Traditional machine learning follows predictable patterns. You have datasets with ground truth labels, metrics that clearly indicate success or failure,
and deployment pipelines that scale horizontally. GenAl is disruptive not only for its powerful features, but also for introducing foundational changes to

how quality and stability are measured and ensured.

Consider a simple question: "How do you know if your RAG system is working correctly?" In traditional ML, you'd check accuracy against a test set. In

GenAl, you're dealing with:

Complex execution flows involving multiple LLM calls, retrievals, and tool interactions
Subjective output quality where "correct” can mean dozens of different valid responses
Latency and cost concerns that can make or break user experience

Debugging nightmares when something goes wrong deep in a multi-step reasoning chain
The current solution? Most teams cobble together maonitoring tools, evaluation scripts, and deployment pipelines from different vendors. The result is

fragmented workflows where critical information gets lost between systems.

MLflow comment on GenAl

Bugfixing Neural Networks

1 & Personal Take Alarm &

Only my personal opinion on the next slide
Please discuss

« Current LLMs design principles and implementations are adverse for
verification and proper software engineering
» Yet they are deployed

- | see little value on systems that are not working, which quality is difficult
to assess and control, put a heavy toll on planetary resources and
societies

- Hot take steming from (Bender et al. 2021), (Varoquaux, Luccioni, and
Whittaker 2025) and (Crawford 2021)

1 & Personal Take Alarm &

Discussions and future
trends

On the importance of a good testing scenario

« Ensuring good coverage on the scenario
- Having a specification of your system operation is crucial (Khlaaf 2023)
» That is why it is impossible to test LLMs, as they are usually unscoped
and unbounded

Bugfixing Neural Networks 63 /73

Formal verification has a card to play

« Checking crucial instances is worthy on critical settings

« Runtime prevents for now of applying this to large networks on a large set
of points

Bugfixing Neural Networks 64 /73

Open questions

Testing
« How to specify which scenarios to generate?

Debugging

« Can we « keep repairing » until we achieve 100% accuracy?
« Extend the search to multiple architectures?
» How to encode that problem?

Logical constraints

« How much of & can be compiled to a loss £?
» Is the network any good at learning the constraint?

@ Bugfixing Neural Networks

65 /73

Bibliography

Adjed, Faouzi, Mallek Mziou-Sallami, Frédéric Pelliccia, Mehdi Rezzoug, Lucas
Schott, Christophe Bohn, and Yesmina Jaafra. 2022. “Coupling Algebraic
Topology Theory, Formal Methods and Safety Requirements toward a
New Coverage Metric for Artificial Intelligence Models”. Neural Computing
and Applications, May. Springer Science, Business Media LLC. doi:10.1007/
s00521-022-07363-6.

Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can Language

Models Be Too Big? #_".In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, And Transparency, 610—623. Facct 21. Virtual

@ Bugfixing Neural Networks 66 /73

https://doi.org/10.1007/s00521-022-07363-6
https://doi.org/10.1007/s00521-022-07363-6

Event, Canada: Association for Computing Machinery.
doi:10.1145/3442188.3445922.

Crawford, Kata. 2021. The Atlas of Al: Power, Politics, And the Planetary Costs
of Artificial Intelligence. Yale University Press. doi:10.2307/].ctvighv45t.

Daggitt, Matthew L., Wen Kokke, Robert Atkey, Natalia Slusarz, Luca Arnaboldi,
and Ekaterina Komendantskaya. 2024. “Venhicle: Bridging the Embedding
Gap in the Verification of Neuro-Symbolic Programs”. arXiv. doi:10.48550/
ARXIV.2401.06379.

Deng, Yao, Xi Zheng, Tianyi Zhang, Huai Liu, Guannan Lou, Miryung Kim, and
Tsong Yueh Chen. 2023. “A Declarative Metamorphic Testing Framework

@ Bugfixing Neural Networks 67 /73

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.2307/j.ctv1ghv45t
https://doi.org/10.48550/ARXIV.2401.06379
https://doi.org/10.48550/ARXIV.2401.06379

for Autonomous Driving”. IEEE Transactions on Software Engineering 49
(4):1964-1982. doi:10.1109/TSE.2022.3206427.

Dijkstra, E.W. 1976. A Discipline of Programming. Prentice-Hall Series in
Automatic Computation. Prentice-Hall.

Dola, Swaroopa, Matthew B. Dwyer, and Mary Lou Soffa. 2021. “Distribution-
Aware Testing of Neural Networks Using Generative Models”. In 2021 IEEE/
ACM 43rd International Conference on Software Engineering (ICSE), 226-
237. doi:10.1109/ICSE43902.2021.00032.

Elsaleh, Raya, and Guy Katz. 2023. “Delbugv: Delta-Debugging Neural
Network Verifiers”. arXiv. doi:]0.48550/ARXIV.2305.18558.

g Bugfixing Neural Networks 68 /73

https://doi.org/10.1109/TSE.2022.3206427
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.48550/ARXIV.2305.18558

Goldberger, Ben, Guy Katz, Yossi Adi, and Joseph Keshet. 2020. “Minimal
Modifications of Deep Neural Networks Using Verification”. In Lpar23.
LPAR-23: 23rd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, edited by Elvira Albert and Laura
Kovacs, 73:260—-278. Epic Series in Computing. EasyChair.
doi:10.29007/699q.

Katz, Guy, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks”. In Computer Aided Verification, 97-117. Springer International
Publishing. doi:10.1007/978-3-319-63387-9_ 5.

@ Bugfixing Neural Networks 69 /73

https://doi.org/10.29007/699q
https://doi.org/10.1007/978-3-319-63387-9_5

Khlaaf, Heidy. 2023. Toward Comprehensive Risk Assessments and
Assurance of Al-Based Systems. https://www.trailofbits.com/
documents/Toward_comprehensive_risk_assessments.pdf.

Lemesle, Augustin, Aymeric Varasse, Zakaria Chihani, and Dominique
Tachet. 2023. “AIMOS: Metamorphic Testing of Al - Anindustrial
Application”. WAISE 2023.

Pei, Kexin, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. “Deepxplore:
Automated Whitebox Testing of Deep Learning Systems”. In Proceedings
of the 26th Symposium on Operating Systems Principles, 1-18. SOSP 17.
Shanghai, China: Association for Computing Machinery.
doi:10.1145/3132747.3132785.

Q Bugfixing Neural Networks 70/ 73

https://www.trailofbits.com/documents/Toward_comprehensive_risk_assessments.pdf
https://www.trailofbits.com/documents/Toward_comprehensive_risk_assessments.pdf
https://doi.org/10.1145/3132747.3132785

Refaeli, Idan, and Guy Katz. 2021. “Minimal Multi-Layer Modifications of Deep
Neural Networks”. arXiv. doi:10.48550/arXiv.2110.09929.

Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. “Concolic Testing for Deep Neural Networks”. In
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 109-119. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/3238147.3238172.

Tian, Yuchi, Kexin Pei, Suman Jana, and Baishakhi Ray. 2017. “Deeptest:
Automated Testing of Deep-Neural-Network-Driven Autonomous Cars”.
Corr. http://arxiv.org/abs/1708.08559.

g Bugfixing Neural Networks 7/ 73

https://doi.org/10.48550/arXiv.2110.09929
https://doi.org/10.1145/3238147.3238172
http://arxiv.org/abs/1708.08559

Varoquaux, Gaél, Alexandra Sasha Luccioni, and Meredith Whittaker. 2025.
“Hype, Sustainability, And the Price of the Bigger-Is-Better Paradigm in
Al". arXiv. doi:10.48550/arXiv.2409.14160.

Zech, John R, Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J.
Titano, and Eric Karl Oermann. 2018. “Variable Generalization
Performance of a Deep Learning Model to Detect Pneumonia in Chest
Radiographs: A Cross-Sectional Study”. Edited by Aziz Sheikh. PLOS
Medicine 15 (11). Public Library of Science (PLoS): €1002683. doi:10.1371/
journal.omed.1002683.

Zeller, A., and R. Hildebrandt. 2002. “Simplifying and Isolating Failure-
Inducing Input”. [EEE Transactions on Software Engineering 28 (2).

@ Bugfixing Neural Networks 72 [73

https://doi.org/10.48550/arXiv.2409.14160
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683

Institute of Electrical, Electronics Engineers (IEEE): 183—200.
doi:10.1109/32.988498.

Zhang, Mengshi, Yugun Zhang, Lingming Zhang, Cong Liu, and Sarfraz
Khurshid. 2018. “DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems”. Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3238147.3238187.

Slusarz, Natalia, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert
Stewart, and Kathrin Stark. 2023. “Logic of Differentiable Logics: Towards a
Uniform Semantics of DI.”

@ Bugfixing Neural Networks 73/ 73

https://doi.org/10.1109/32.988498
https://doi.org/10.1145/3238147.3238187

	Recaps on previous course
	This session

	A brief introduction on testing
	First introduction of testing on ML
	Testing for neural network - the question of scenario
	Another approach: Metamorphic testing
	Metamorphic testing with AIMOS
	Industrial tools for testing ML
	Fundamental limitation of testing

	On the interest of bugfixing with formal verification
	Bugfixing?
	Why bugfixing in the first place?
	Formal verification to the rescue
	Definition
	Exemple
	Rephrasing the problem
	Initial limitations
	Multi-layer reparation
	Delta-debugging

	Encoding constraints during training
	Certified training
	Differentiable Logics

	On LLMs and scoping your systems
	Requirements (or the lack of thereof)

	Discussions and future trends
	On the importance of a good testing scenario
	Formal verification has a card to play
	Open questions
	Testing
	Debugging
	Logical constraints

	Bibliography

