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Introduction



Me:
• researcher at the French Commission for Atomic

and Alternative Energies on Trustworthy AI
• one of our mission is « Technological Transfer », as

Zakaria showed yesterday
• developer and maintainer of the CAISAR platform
• research interests include formal verification for AI,

specification languages, formal explanation

My expectations:
• have some of you convinced that Formal Methods

can be useful for ML
• present you some of our research
• collect expectations of actual ML practioners
• discuss on your views on Formal Methods and their

limitations
• convert you to using FM tools get yourselves a

notion of « software engineering » for machine
learning
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You:
• a diverse set of PhD students on AI, machine

learning and/or symbolic with really diverse
research interests

• knowledgeable on some degree on how to
operate machine learning (training, checking
metrics, finetuning)

• use ML for science, or study ML with a certain
degree of applicability, or apply ML in the industry

Your expectations: Let us discuss! Why did you join
this course? 
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You:
• a diverse set of PhD students on AI, machine

learning and/or symbolic with really diverse
research interests

• knowledgeable on some degree on how to
operate machine learning (training, checking
metrics, finetuning)

• use ML for science, or study ML with a certain
degree of applicability, or apply ML in the industry

Your expectations: Let us discuss! Why did you join
this course? If you are more inclined into Y/N
questions:
• have you ever setup unit tests for ML?
• do you use Continuous Integration?
• is the word « proof » itches you?
• or does it sparks joy?
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Scope of this session:
• Verification of Machine Learning,

with a strong focus on Neural
Networks

• Local robustness and its
declinations

• Abstract Interpretation for Neural
Network

Not covered in this course:
• Training schemes like

Differentiable Logics (Ślusarz et al.
2023)

• Purely symbolic systems (plenty of
resources already on this topic)

• LLMs (why? Wait for Session 4 🤫)
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Tackling small variations on
the inputs



,

Altering the prediction of a neural
network



Intuition

Sensor uncertainty (because physical components, data transmission, sometimes low quality of component) may result in critical systems failures
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Perpetuating embedded social biases



Intuition
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Definition

Local robustness (Katz et al. 2017)

Let a classifier 𝑓 : 𝒳 ↦ 𝒴. Given 𝑥 ∈ 𝒳 and 𝜀 ∈ ℝ ⋘ 1 the problem of local
robustness is to prove that ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 < 𝜀 → 𝑓(𝑥) = 𝑓(𝑥′)
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Definition

To prove this property usually means falsifying its negation:

Falsfying local robustness

Let a classifier 𝑓 : 𝒳 ↦ 𝒴. Given 𝑥 ∈ 𝒳 and 𝜀 ∈ ℝ ⋘ 1, the problem of
finding a point 𝑥′ such that ∃𝑥′. ‖𝑥 − 𝑥′‖𝑝 < 𝜀 ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥′)
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Variations

Numerous variants can be found in the literature (Casadio et al. 2022)

Prediction invariance

Given 𝛿 ∈ ℝ, ∃𝑥′. ‖𝑥 − 𝑥′‖𝑝 ≤ 𝜀 ⇒ ‖𝑓(𝑥) − 𝑓(𝑥′)‖𝑝 ≤ 𝛿

Exact classification is very unlikely to happen

Importance of distance function ‖ ⋅ ‖𝑝
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Variations

Lipschitz Robustness

Given 𝐿 ∈ ℝ, ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 ≤ 𝜀 ⇒ ‖𝑓(𝑥) − 𝑓(𝑥′)‖𝑝 ≤ 𝐿‖𝑥 − 𝑥′‖𝑝

« Smooth » the variation of output with regard to inputs
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Variations

Class-robust prediction

∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 ≤ 𝜀 ⇒ class𝑓(𝑥) = class 𝑓(𝑥′)

Useful in a classification setting

Given 𝑖 ∈ {1..𝑐} the set of indices defining possible classes for a classification
setting, ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 ≤ 𝜀 ⇒ class𝑓(𝑥) = 𝑖 = class 𝑓(𝑥′)
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Variations

Strong classification Robustness

Given 𝜈 ∈ ℝ, ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 ≤ 𝜀 ⇒ class𝑓(𝑥′) = class𝑓(𝑥) ∧ class𝑓(𝑥) ≥ 𝜈

𝜈 usually being above 0.5 to describe a « high confidence » network
(softmax value)
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On norms

Which norm to use? The most frequent norms are 𝐿2, 𝐿1 and 𝐿∞:

𝐿1(𝑥) = ∑𝑖|𝑥𝑖|

𝑥
𝑦

𝑧

𝐿2(𝑥) = √∑𝑖 (𝑥𝑖)
2

𝑥
𝑦

𝑧

𝐿∞(𝑥) = max𝑖|𝑥𝑖|

𝑥
𝑦

𝑧

All describe convex sets
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Encoding and verifying



Assessing the local robustness of a
neural network is a NP-Complete
problem (Katz et al. 2017)



Spheres, hyperboxes… all are convex shapes, right?
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Spheres, hyperboxes… all are convex shapes, right?

Existing approaches to solve convex problems include well-known techniques:

• Satisfaction Modulo Theory (SMT) with Linear Arithmetic (Kroening and Strichman
2016)

• Abstract Interpretation (Mirman, Gehr, and Vechev 2018; Lemesle, Lehmann, and
Gall 2024)
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On the ReLU

𝑥

𝑦

𝑢

𝑙

ReLU(𝑥) = max(𝑥, 0)
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On the ReLU

𝑥

𝑦

𝑢

𝑙
ReLU(𝑥) = max(𝑥, 0)
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On the ReLU

𝑥

𝑦

𝑢

𝑙
ReLU(𝑥) = max(𝑥, 0)

• Two states: active (𝑥 ≥ 0) or
inactive (𝑥 < 0)

• Given a network with 𝑛 ReLUs, 2𝑛

possible activation states
• Need to approximate as a convex

shape ⇒ inaccuracies
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. initial answer

• 𝑥1 : true, 𝑥2 : true, 𝑥3 : true, 𝑥4 : true, 𝑥5 : false,
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. initial answer

• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥3 : 𝑏 ≤ 2, 𝑥4 : 𝑏 ≤ 3,
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. initial answer

• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥3 : 𝑏 ≤ 2, 𝑥4 : 𝑏 ≤ 3,

𝑎 = 4 ∧ 𝑎 = 6 is unfeasible!
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. initial answer

• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥3 : 𝑏 ≤ 2, 𝑥4 : 𝑏 ≤ 3,

𝑎 = 4 ∧ 𝑎 = 6 is unfeasible!

Solution: encode a new constraint to the SAT formula: ¬𝑥1 ∨ ¬𝑥2
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. initial answer

• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥3 : 𝑏 ≤ 2, 𝑥4 : 𝑏 ≤ 3,

𝑎 = 4 ∧ 𝑎 = 6 is unfeasible!

Solution: encode a new constraint to the SAT formula: ¬𝑥1 ∨ ¬𝑥2

4. New SAT formula: (¬𝑥1 ∨ ¬𝑥2) ∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (¬𝚡𝟷 ∨ ¬𝚡𝟸) ∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. New answer:

• 𝑥1 : true, 𝑥2 : false, 𝑥3 : true, 𝑥4 : true, 𝑥5 : false,
4. 𝑎 = 4 ∧ 𝑏 = 2 satisfy the formula
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One-slide primer on SMT calculus

Consider the formula: ((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

Are there reals numbers making this formula true?

1. Encode constraints as boolean atoms
• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 = 6, 𝑥3 : 𝑎 ≥ 3, 𝑥4 : 𝑏 ≤ 2, 𝑥5 : 𝑏 ≥ 3

2. SAT formula: (¬𝚡𝟷 ∨ ¬𝚡𝟸) ∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))
3. New answer:

• 𝑥1 : 𝑎 = 4, 𝑥2 : 𝑎 ≠ 6, 𝑥3 : 𝑎 ≥ 3, 𝑥3 : 𝑏 ≤ 2, 𝑥4 : 𝑏 ≤ 3,
4. 𝑎 = 4 ∧ 𝑏 = 2 satisfy the formula
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SMT solver

Original formula

((𝑎 = 4) ∨ (𝑎 = 6)) ∧ (𝑎 ≥ 3 ∧ ((𝑏 ≤ 2) ∨ (𝑏 ≥ 3))

𝚂𝙰𝚃, 𝚄𝙽𝚂𝙰𝚃, 𝚃𝙸𝙼𝙴𝙾𝚄𝚃

SMT interpretor

SAT solver Theory solver
SAT assignment

Constraint synthesis
¬𝑥1 ∨ ¬𝑥2

Boolean formula

(𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∧ (𝑥4 ∨ 𝑥5))



Mixed-Integer Linear Programming (Tjeng, Xiao,
and Tedrake 2019)

Minimize 𝑐T𝑥 subject to 
𝐴𝑥 ≤ 𝑏

𝑙 ≤ 𝑥 ≤ 𝑢
𝑥𝑖 ∈ ℤ
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Mixed-Integer Linear Programming (Tjeng, Xiao,
and Tedrake 2019)

Given 𝑦 = ReLU(𝑧), 𝑧 (resp. 𝑧 ) the lower bound (resp. upper bound) of 𝑧,
propose the following encoding for the ReLU

𝑦 ≤ 𝑧 − 𝑧(1 − 𝑎)) ∧ 𝑦 ≥ 𝑧 ∧ (𝑦 ≤ 𝑧𝑎) ∧ (𝑦 ≥ 0) ∧ 𝑎 ∈ {0, 1}

Slightly higher-level than SMT solver with QF_LRA so usually what is used
within most decision procedures
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Abstract interpretation

Intuition
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Abstract interpretation

Intuition
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Abstract interpretation

Intuition
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Abstract interpretation

Intuition

Problem to compute: when to unleash Virgule?
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Park: good Empty street: okay

Other animals:
meh

Gigantic street: not
a chance



Abstract interpretation

Benefits of abstracting a problem
• easier for me to take a decision
‣ if maybe_car then leash else free_puppy

• guarantees safety for Virgule
• balance to be found between ease to take a decision and Virgule’s well-

being (ensure your pets stay hydrated during the hot summer and don’t keep them in a car)
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Abstract interpretation

What would be the content of the abstraction?
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Abstract interpretation

What would be the content of the abstraction?
• general kind of location (park? street?)
• presence of humans
• presence of cars
• general location of virgule (assuming the dog don’t fly)
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Abstract interpretation

What would be the content of the abstraction?
• general kind of location (park? street?)
• presence of humans
• presence of cars
• general location of virgule (assuming the dog don’t fly)

type abstract_state = (Park | Street, bool, bool, (int, int))
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Abstract interpretation

For any possible situation s : concrete_state, I need to:
• convert it to an abstract state: val abstract: concrete_state ->
abstract_state

• perform decision on the abstract state: val compute:  abstract_state ->
abstract_state

• ensure the decision in my brain is actually happening: val concretize:
abstract_state -> concrete_state
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Abstract interpretation

Abstract interpretation (Miné 2017; Cousot and Cousot 1977) is a theoretical
framework to soundly abstract a program, use it to perform abstract,
simplified computations and deduce properties on said program
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Abstract interpretation

Ensure my model of the real world sufficiently describes the relevant parts,
and ensure my decision making process is coherent
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Abstract interpretation for neural networks

What kind of rather simple, subspace we saw earlier in the course could be
a good candidate?
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Abstract interpretation for neural networks

What kind of rather simple, subspace we saw earlier in the course could be
a good candidate?

𝑥

𝑦

𝑧
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Abstract interpretation for neural networks

What kind of rather simple, subspace we saw earlier in the course could be
a good candidate?

𝑥

𝑦

𝑧

For a neural network: compute convex sets!
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𝐿1(𝑥) = ∑𝑖|𝑥𝑖|

𝑥

𝑦

𝑧

𝐿1

𝐿2(𝑥) = √∑𝑖 (𝑥𝑖)
2

𝑥

𝑦

𝑧

𝐿2

𝐿∞(𝑥) = max𝑖|𝑥𝑖|

𝑥

𝑦

𝑧
𝐿∞



Abstract interpretation for neural networks

The input space described by local robustness property is a convex set

What would it look like to compute such set with a neural network?
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Abstract interpretation for neural networks

The input space described by local robustness property is a convex set

What would it look like to compute such set with a neural network?

Let us have an example!
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Each layer is separated by a ReLU = max(𝑥, 0).

Assume we want to check 𝑦0 > 0

𝑛0
0

𝑛0
1

𝑛0
0 𝑛1

0

𝑛0
1 𝑛1

1

𝑛1
0 𝑛2

0

𝑛1
1 𝑛2

1

𝑦

1

1−1

2

1

2−1

−0.5

−1

1



Each layer is separated by a ReLU = max(𝑥, 0).

Assume we want to check 𝑦0 > 0

𝑛0
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1

𝑛0
0 𝑛1
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𝑛0
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𝑛1
0 𝑛2
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𝑛1
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−1
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𝑛0
0 ∈ [0, 1]

𝑛0
1 ∈ [0, 1]



Each layer is separated by a ReLU = max(𝑥, 0).

Assume we want to check 𝑦0 > 0

𝑛0
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𝑛0
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Each layer is separated by a ReLU = max(𝑥, 0).

Assume we want to check 𝑦0 > 0
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Each layer is separated by a ReLU = max(𝑥, 0).

Assume we want to check 𝑦0 > 0

𝑛0
0

𝑛0
1

𝑛0
0 𝑛1

0

𝑛0
1 𝑛1

1

𝑛1
0 𝑛2

0

𝑛1
1 𝑛2

1

𝑦

1

1−1

2

1

2−1

−0.5

−1

1

𝑛0
0 ∈ [0, 1]

𝑛0
1 ∈ [0, 1]

𝑛1
0 ∈ [−1, 1]

𝑛1
1 ∈ [0, 3]

𝑛2
0 ∈ [−4, 1]

𝑛2
1 ∈ [−3.5, 2]

𝑦 ∈ [−4.5, 6]

A bit imprecise, right?



𝑛0
0

𝑛0
1

𝑛0
0 𝑛1

0

𝑛0
1 𝑛1

1

𝑛1
0 𝑛2

0

𝑛1
1 𝑛2

1

𝑦

1

1
−1

2

1

2
−1

−0.5

−1

1

𝑛0
0 ∈ [0, 1]

𝑛0
1 ∈ [0, 1]

𝑛1
0 ∈ [−1, −1]

𝑛1
1 ∈ [0, 3]

𝑛2
0 ∈ [−4, 1]

𝑛2
1 ∈ [−3.5, 2]
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Relational domains

What we just did was using relational domains: computing convex sets that keep
track of variable bounds and their relations.

There exist a real fauna of numerical domains, we will briefly skim through them.

⚠ next slides might be gory
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Relational domains

Zonotopes
A convex polytope with central symmetry

𝑥𝑖 = {∑𝑚
𝑗=1 𝛼𝑖,𝑗𝜀𝑗 + 𝛽𝑖 | 𝜀 ∈ [−1, 1]𝑚}

Here, 𝛼𝑖,𝑗 are symbolic relational variables, 𝜀𝑗
are noise symbols and 𝛽𝑗 are symbolic
variables.

Zonotope abstraction for various
activation functions, extracted from
(Lemesle, Lehmann, and Gall 2024)
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Relational domains

Constrained Zonotopes
A zonotope with additional constraints as
seen in Convex Optimization

𝑥𝑖 = {∑𝑚
𝑗=1 𝛼𝑖,𝑗𝜀𝑗 + 𝛽𝑖 | 𝜀 ∈ [−1, 1]𝑚 | ∀𝑘 ∈

{1.., K}, ∑𝑚
𝑗=1 A𝑘,𝑗𝜀𝑗 + 𝑏𝑘 ≥ 0} where 𝐴𝑘,𝑗 ∈ ℝ and

𝑏𝑘 ∈ ℝ

Constrained Zonotope abstraction for
the ReLU, extracted from (Lemesle,

Lehmann, and Gall 2024)
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Relational domains

Hybrid Zonotopes
An hybrid zonotope is an union of constraint
zonotopes defined by integer-only variables

𝑥𝑖 = {∑
𝑚𝑐

𝑗=1
𝛼𝑖,𝑗𝜀𝑐

𝑗 + ∑
𝑚𝑏

𝑗=1
𝛾𝑖,𝑗𝜀𝑏

𝑗 + 𝛽𝑖

| 𝜀𝑐 ∈ [−1, 1]𝑚

| 𝜀𝑏 ∈ {−1, 1}𝑚
𝑏

∀𝑘 ∈ {1.., K}, ∑
𝑚𝑐

𝑗=1
𝑎𝑘,𝑗𝜀𝑐

𝑗 + ∑
𝑚𝑏

𝑗=1
𝑏𝑘,𝑗𝜀𝑏

𝑗 + 𝑐𝑘 = 0}

where 𝛾𝑖,𝑗 are called binary generators and
𝑎𝑘,𝑗, 𝑏𝑘,𝑗, 𝑐𝑘 ∈ ℝ

Hybrid Zonotope abstraction for the ReLU,
extracted from (Lemesle, Lehmann, and

Gall 2024). Note that they can exactly
represent piece-wise linear activations,
but then require a dedicated solver to

find bounds
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And what to do with all that?

1. transforms a neural network 𝑓  that maps
concrete inputs ℝ𝑑 to concrete outputs ℝ𝑝

into a « neural network » that maps convex
sets to convex sets let abstract =  (𝑓 : ℝ𝑑 →
ℝ𝑝) ->  (𝑓# : 𝒳# →

#
𝒴#)

2. compute convex sets performing Interval
Bound Propagation let (→

#
) = 𝒳# ->  𝒴#

3. (during computation) checks the abstract
outputs within the concrete outputs let
concretize =  𝒴# -> ℝ𝑝

4. check that the abstract output lies within a
safety set
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And what to do with all that?

Choosing the proper abstraction is a crucial
tradeoff between precision and speed
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Not that this is not limited to local robustness!
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Checking a safety property is equivalent
of checking for set inclusion



Some results and examples

Briefly, extracted from the VNN-Comp reports (Brix et al. 2023):

• ACAS-Xu property check takes ∼ 11𝑠 mean
‣ global proof 🎉

• CIFAR100 Local Robustness takes ∼ 85𝑠 mean
‣ local proof 🤔
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Extensions

We can make a training scheme out of this!

cf. the whole domain of adversarial attacks and defense on ESSAI courses Bridging
Adversarial Learning and Data-Centric AI for Robust AI and AI for Security: Exploring
Adversarial Learning and the Transferability of Adversarial Attacks

Core idea: use formal verification during training to train the neural network to
predict the correct class against a worst-perturbation 𝜀

More details: (Balunovic and Vechev 2020; Jovanović et al. 2022)
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Limitations



Threat model

Local robustness (Katz et al. 2017)

Let a classifier 𝑓 : 𝒳 ↦ 𝒴. Given 𝑥 ∈ 𝒳 and 𝜀 ∈ ℝ ⋘ 1 the problem of local
robustness is to prove that ∀𝑥′. ‖𝑥 − 𝑥′‖𝑝 < 𝜀 → 𝑓(𝑥) = 𝑓(𝑥′)

• choosing the correct 𝜀 depends on the use case

• local robustness is only valid up to a given 𝜀
‣ usually, 10

255  on MNIST and 2
255  on bigger datasets; not much…

‣ it costs almost nothing to attack, depending on your threat model

• physical adversarial examples are difficult to protect against
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Semantic transformations

How to encode image rotations (Balunovic et al. 2019) ?
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Hyperproperties

Confidence-based robustness
(Athavale et al. 2024)

∀𝑥, 𝑥′, cond(𝑥, 𝑥′, 𝜀) ∧ conf(𝑓(𝑥)) > 𝜅 ⇒
class(𝑓(𝑥)) = class(𝑓(𝑥′))

For all couple of inputs, as long as the network
is confident enough in its prediction,
prediction should not change

And a whole family of hyperproperties
(multiple execution traces)

Global robustness
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Next sessions



In session 3

• Formal explanations, or how to use Formal Methods to provide guarantees
explanations (Marques-Silva and Huang 2024)
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In session 4

• Using formal verification to debug neural networks
• Testing neural networks
• Certified Training ?
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In session 5

• Languages to express specifications
• Tool to check those specifications
• Variety of community initiatives (competitions, benchmarks, conferences)
• Open questions and discussions
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Thanks for your attention!



Very short feedback

• Was the technical level alright?
• Are there some notions you may want to focus more or discuss further?
• General questions?
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